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ABSTRACT A new nonlinear dynamical analysis is applied to complex behavior from neuronal systems. The conceptual
foundation of this analysis is the abstraction of observed neuronal activities into a dynamical landscape characterized by a
hierarchy of “unstable periodic orbits” (UPOs). UPOs are rigorously identified in data sets representative of three different
levels of organization in mammalian brain. An analysis based on UPOs affords a novel alternative method of decoding,
predicting, and controlling these neuronal systems.

INTRODUCTION

What is the optimal way to describe the behavior of aa sequence of close approaches to these orbits. The more
dynamical system? This question has a special interest famstable an orbit, the less time the system spends near it.
neuroscientists, because the dynamics of the nervous systduiPOs form the “skeleton” of nonlinear dynamics, and even
seems intractably complex. Although much effort has beerthe behavior of chaotic systems can be characterized by an
made in recent years to characterize neuronal complexitinfinite set of these orbits (Auerbach et al., 1987; Cuvit-
using tools developed to decipher nonlinear systems (Basaanovic, 1988).
1990; Skarda and Freeman, 1987; King, 1991; Garfinkel, One can build a model of the dynamics of a system by
1983), insight resulting from such new analysis has beemounting and characterizing its UPOs in a hierarchy of
limited (Rapp, 1993). What we have learned is that there arerbits with increasing periodicity. The accuracy of such a
deterministic dynamics present in neuronal behavior frommodel can be improved by progressively adding longer
single cells (Aihara and Matsumoto, 1986; Mpitsos et al.,period orbits to the hierarchy. The dynamical landscape can
1988; Hoffman et al., 1995), from ensembles of neuronghen be tessellated into regions of state space centered
(Chang et al., 1994; Schiff et al., 1994; Hayashi and Ishi-around these UPOs (Artuso et al., 1990a,b). Orbit locations
zuka, 1995), and even from large-scale measurementsnd stabilities provide short-term prediction for the future
(Rapp et al., 1989; Casdagli et al., 1996; Scott and Schiffstate of the system (Pawelzik and Schuster, 1991). Further-
1995) such as the electroencephalogram (EEG), that cannptore, if the system is nonstationary because of slow para-
be fully described with simple linear models. We have alsometric variations, this can be detected through the temporal
learned that there is synchrony between neurons that casvolution of the UPOs. With a full, possibly infinite set of
only be detected with nonlinear measures (Schiff et al. UPOs and their stabilities, one can calculate thermodynamic
1996). Perhaps the most practical application of nonlineaproperties of a dynamical system such as entropy and di-
techniques to biological systems has been dynamical contrehension. This would be of little experimental relevance
of cardiac (Garfinkel et al., 1992) and neuronal (Schiff etwere it not for the finding of Cvitanovic and colleagues
al., 1994b) tissues. By exploiting the natural dynamics of(Auerbach et al., 1987; Artuso et al., 1990a) that good
the system, these techniques were used to stabilize or destimates of thermodynamic properties can be obtained by
stabilize heart beats and neuronal firing with minimumusing just the short orbits—the ones most accessible exper-
perturbation. In this paradigm, control was achievedimentally. Numerous theoretical systems were shown to be
through stabilization of an “unstable periodic orbit” (UPO) well described through this approach (Artuso et al. 1990b),
embedded within the dynamics (Ott et al., 1990). but until recently procedures to rigorously identify UPOs
In a mathematical space whose coordinates represent ti®m noisy experimental data were inadequate.
state of a dynamical system (state space), periodic orbits are |n 1995, Witkowski et al. (1995) statistically confirmed
the equilibrium states. If all of the periodic orbits in this the existence of unstable period-1 orbits in short biological
abstract dynamical landscape are unstable, the system@ta sets, from fibrillating dog ventricular myocardium, by
temporal evolution will never settle down to any one of comparing the detection frequency of period-1 orbits in
them. Instead, the system’s behavior wanders incessantly éxperimental versus surrogate data, i.e., stochastic se-
quences generated with statistical properties similar to those
of the original data (Theiler et al., 1992). A more general
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rence technique to identify UPOs in catfish electroreceptorsising extracellular potential recordings from the CA3 cell
(Braun et al., 1997) and teleost Mauthner cells’ synaptidhody layer, which was perfused with an elevated potassium
noise (Faure and Korn, 1997). However, there are signifilevel (7.5-10.5 mM [K]). Digitized human EEG was col-
cant shortcomings of a strict recurrence approach to UP@ected from patients undergoing routine evaluation for epi-
identification. Recurrence requires that a system’s statéepsy surgery that required implanted subdural or depth
returns repeatedly near an orbit (Lathrop and Kostelichglectrodes for medical purposes unrelated to this study.
1989), yet such events may be rare in finite data sets. ThiEpileptic extracellular interictal spikes were identified from
is further exacerbated in biological data sets, which arghe electrode closest to the epileptic focus. Because no
typically short and nonstationary. In addition, whereas theautomated method can reliably discriminate human epilep-
above recurrence methods principally addressed the quese spikes, we hand-edited these data sets for accuracy (Scott
tion of existence of UPOs, they are less suited to theand Schiff, 1995). Institutional Review Board and Animal
enumeration of distinct orbits, especially when hierarchieRResearch Committee approval from the Children’s National
of orbits with higher periodicity are present. Medical Center were obtained for this research. In each

Our group has made substantial progress in the identifiease, spike or burst events were identified from the record-
cation of UPOs from experimental data (So et al., 1996jngs, and the series of interval lengths between events was
1997). We developed a transformation utilizing the localused for analysis. The relationship between raw data, event
dynamics of the system such that the transformed data atemes,t,, and interevent intervals,, is illustrated in Fig. 1a.
concentrated about distinct UPOs. The transformation acts Our basic assumption is that there exists a significant
as a dynamical lens to enhance the probability measurdeterministic component within the seemingly noisy activ-
about the UPOs in state space. This probability enhancety of neurons and their ensembles, and therefore UPOs can
ment helps to offset the frequent scarcity of trajectories neabe used to characterize the system’s dynamics. The first step
UPOs. In addition, we have significantly improved the in our analysis is to use delay coordinate embedding (Tak-
ability to identify complex higher period orbits by using ens, 1981; Sauer et al., 1991; Sauer, 1994) to reconstruct the
fragments of trajectories near those orbits (So et al., 1997underlying dynamics from our experimental data. In gen-
This technique overcomes the problem that, if an orbit wa®ral, from a data sequence,}], delay vectorsz, in state
unstable, the system would rarely be seen to stay near thepaceZ with dimensionM and time lagr are given byz, =
entire orbit. We also instituted statistics via surrogate datdx,, X,—,, - - . , X,——1),)- With a proper choice of the
(Theiler et al., 1992) to establish confidence limits on theparameter§/ andr, the geometric object defined ihby the
probability that the identified UPOs were not spurious. Ourlocus of points .} will provide a model that is topologi-
preliminary analysis demonstrated that this approach couldally equivalent to the original dynamics that generated the
be successfully applied to the identification of period-1data sequence.
UPOs in neuronal ensemble data (So et al., 1997). In addi- To extract the unstable periodic orbits from reconstructed
tion, a recent report using this transform technique constate space, a transformation based on observed local dy-
firmed the existence of period-1 UPOs in epileptiform ac-namics is applied to our data (So et al., 1996, 1997). The
tivity from human cortex (Le Van Quyen et al., 1997). transformation concentrates the data around the UPOs. In

We report here the first extensive application of theseparticular, one can show that for noise-free dynamics, the
methods to neuronal dynamics. We examine activity fromprobability distribution function of the transformed data will
several organizational scales of neuronal structures: netiave singularities at the true periodic orbits. This reduces
work behavior from small in vitro ensembles, activity of extraction of periodic orbits from experimental data to sim-
single cells within such ensembles, and large-scale activitply looking for peaks in the distribution of the transformed
from human cortical electroencephalographs (EEGs). Welata.
find that UPOs are present with high statistical confidence The probability enhancement effect of this transformation
in all of these data, and that indeed they are pervasive ican be illustrated by using a one-dimensional discrete-time
such neuronal activities. These findings suggest a novalynamical systemx,, ., = f(x,), wheref(x,) is a nonlinear
means of characterizing neuronal dynamics. function that prescribes the evolution of the system state

A period p orbit, X, is defined by the condition that the
pth-iterated image ok}, is againxy, i.e.,

METHODS fofor o t00) = X,

Data were collected from both transversely and longitudi- p

nally cut in vitro rat hippocampal slices (see Gluckman et

al., 1996 for preparation details), as well as in vivo invasivewheree denotes functional composition. We assume that the
EEG recordings from human epileptic patients. Single cellunderlying dynamics described by the functi) is un-
action potential spikes of CA1 neurons were measured biknown to us, but that the local behavior of the dynamics,
using whole-cell attached patch-clamp recordings fromf’(x) = df/dx (x), can be estimated from a local least-squares
slices perfused with normal artificial cerebrospinal fluid fit to the experimental data. The periodic orbit transform
(3.5 mM [K™]). Network burst firing activity was measured g(x,, k) of x, for period-1 orbitsx*:f(x*) = x* is then
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Xn, K transformed data.

However, in a real experimental setting, data sets are
usually contaminated by mixtures of dynamical and obser-

S(Xn, k) = /(X)) + k= (X — X11) vational noise. In these cases, the observed sharp peaks in
the distribution of transformed data are blurred into broad

... maxima, and can even be completely washed out by large

. ) . . S hoise. Comparison with amplitude-adjusted Fourier trans-
orbit transforms for higher dimension and periodicity can beform surrogates (Theiler et al., 1992) can be used to assess

analogously defined (So et al., 1997). With some algebra, ifne gynamical significance of the observed peaks. Each
can be shown that for period-1 orbits, g(x*, k) = x* and  gyrrogate is a realization of a linear stochastic model of the
dg/dx (x*, k) = 0, independent ok. Therefore, the Taylor's  4ata formed with the same amplitude distribution and ap-
expansion ofy(x, k) nearx* is approximately described by proximately the same autocorrelation function as the origi-
a quadratic functiong(x, k) = x* + a(x — x*)?, whereais  naj data. Therefore, we do not expect UPO structure to exist
a constant. After rewriting this equation, we hag@(«) —  in the surrogates. By using multiple realizations of the
x*) = a(x — x*)?. This equation explains the probability- surrogate data and the statistics of extremes (Gumbel,
enhancing effect of the transform nedi If we start witha  1958), we can estimate the probability that peaks observed
uniformly distributed set of data points, the probability thatfrom our data are statistically significant. In particular, for a
a data point will land in a small interval with length  specific peak observed in our transformed data density, we
aroundx* is proportional tce. Under the transformation, the can estimate the probability that a maximal peak with
same points will now be concentrated within a smallergreater amplitude could be found in the transformed surro-

where

is a function defined by the estimated local dynanii¢x,,)
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gate densities. In our previous works (So et al., 1996, 1997hehavior of mammalian neuronal dynamics across two dis-
we have demonstrated the ability of our technique to extradinct levels of organization.
UPOs from numerical models with both dynamical and To extend our periodic orbit analysis to larger scale
observational noise components. neuronal ensembles, we have collected intervals of interictal
An additional problem with biological systems is their spikes from human EEG data. These data were collected
inherent nonstationarity. Such nonstationarity can be ass@rom four different epileptic patients during the hour before
ciated with parameter changes, which would be reflected ifhe onset of a seizure. Two of the four patients’ interictal
changes in the UPO structure. If the system parameterspike sequences contained statistically significant period-1
change slowly with respect to the natural time scale of theJpOs. These results represent a third level of neuronal
dynamics, one may expect the periodic orbit structure to bgrganization for which significant UPOs were observed.
resolvable within short data windows in time (Pel and Moss, In what follows we illustrate this ana|ysis technique in
1996b). Even so, when a system is operating near its bifurdetail. First, we discuss the detection of period-1 orbits from
cation points, its periodic orbit structure might experiencea short time window of extracellular in vitro data (Fig. 1).
sudden changes, including orbit creation and destructionyext, we describe the extraction of a hierarchy of orbits,
We therefore base the following analysis on windowed dataghrough period-3, using intracellular data (Figs. 2 and 3).
in which the windows are chosen short enough to approxwe then demonstrate that the UPOs can be used to predict
imate stationary system states, but long enough to accumighe observed neuronal behavior. Finally, we show how

late good statistics. windowed analysis of long data series can be used to track
nonstationary systems. This is illustrated with both intracel-
RESULTS lular (Fig. 4) and human EEG data (Fig. 5).

Statistically significant UPOs were found from ensemble,
single-cell, and human recordings, as summatrized in Table .
Wegexhaustively searched for period-1 orbits within all of:l':)et':‘\Ctlon of UPOs
our collected data. The first two columns in Table 1 are,A typical example of a period-1 orbit found in the extracel-
respectively, the total number of experiments performedular recordings is shown in Fig. 1. This figure is laid out in
and the percentage of experiments with statistically signifthe same order as the steps in our analysis. First, we extract
icant period-1 orbits within at least one window. In theseevent times and interevent intervals from the raw data (Fig.
analyses we considered observed period-1 orbits to be sta-a). We next make a dynamical representation of the
tistically significant only if the distribution function of the interval sequence (Fig.4) in a delay embedded state space
transformed data had peaks larger than 95% of maximalFig. 1 c). We then apply the period-1 transform on each
peaks observed from the surrogate data sets (30—100). data point in this state space, and compute the distribution of
For the extracellular ensemble burst-firing, about half oftransformed data (Fig. d, black line. For statistical com-
the experiments in the lower potassium ranges (7.5-9.5 mMarison, surrogate data sets are also transformed, and their
[K™]) and 90% of the experiments with higher potassiummean density shown (Fig. d, green lind. The maximal
levels (10.5 mM [K']) had statistically significant period-1 peaks from each surrogate are then extracted, and their
orbits. For the intracellular measurements from single cellglistribution computed. Finally, the density of the trans-
within ensembles, 100% of the experiments had period-formed data is interpreted in terms of the probability of
UPOs. These results represent the first statistical confirmapeing outside the distribution of surrogate maximal peaks
tion of the prevalence of UPOs in the spiking/bursting (Fig. 1 €). The tallest peak in Fig. & which crosses the
95% line, indicates the existence of a period-1 orbit,at

1.04 s.
TABLE 1 Summary of period-1 orbit detection from The. (?olored Seque_ncesli.n Fig-@and d, are trajec'[ories'
extracellular measurements from small ensembles in that visited near the identified period-1 orbit. These points
hippocampal slices, intracellular measurements from single were chosen because, under the transformation, they map
cells within those ensembles, and human cortical EEG into the peak at the period-1 orbit in Fig.d Once we
No. of % No. of % identify points that map into an orbit, we use those points to
exp. significant  windows  significant  estimate the local dynamics near that orbit in state space.
Extracellular The gray arrows in Fig. 1¢ andf, are estimated unstable
7.5 mM K* 8 50 33 12 and stable directions of the identified orbit—in this case, a
8.5 mM K 9 45 44 9 saddle node. In a two-dimensional state space, trajectories
9-5 mM K . 1 55 n 14 near an unstable saddle node will roughly approach it along
10.5 mM K 11 91 67 21 N
the stable direction and then depart along the unstable
Intracellular direction. An example of this behavior is illustrated by the
3.5 mM K* 6 100 250 28 closed circles in Fig. 1.
By using the estimated local dynamics, one can predict
Human EEG 4 50 16 19

the next point in the series based on the current one. Spe-
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FIGURE 2 Hierarchy of UPOs from a single cel) (Sequence of interspike intervals (seconds) and short trace of raw data (zero mV corresponds to top
of vertical calibration ba). (b) Data in two-dimensional delay-embedded state spacandd) Color-coded density plots of period-2 and period-3
transformed data revealing a family of periodiefi graph) and period-3 orbitsright graph). Colors indicate probability (from O to 1) of transformed data
density being outside the distribution of maximum peaks observed from 100 transformed surrogate densities. The most significant peaks,ilitith probab
greater than 95%, are shown in red. Six possible period-2 orbits, including two strongly significant ones, can be ideotifiad five possible period-3

orbits, including three strongly significant ones, can be identified. in

cifically, we use a linear fit to the local dynamics to map the of a four-dimensional state space can be identified from the
current deviation from the orbit in state space to the devicolor coded-density plots shown for period-2 (Figc)2and
ation at the next iterate. Predicted forward iterates for theperiod-3 (Fig. 2d) transformations. (In these plots, red
closed circles in Fig. T are plotted as open circles. The indicates transform densities with significance greater than
predicted values are excellent estimates of the observed negt%.)
intervals. The ability to rigorously locate UPOs and to For discrete-time dynamics in a delay embedded state
extract their local dynamiCS for prediction forms the baSiSSpace’ a perioqb orbit will Comprisep individual pieces’
for control of chaotic (Ott et al., 1990) and nonchaoticyhich are related to each other through a cyclic symmetry.
(Christini and Collins, 1995) systems. Therefore, in our two-dimensional space, all period-1 orbits
lie along the diagonal, all period-2 orbits are pairs of points
) with reflection symmetry across the diagonal, and period-3
UPO hierarchy orbits are triplets of points with triangular symmetry. In Fig.
As discussed above, UPOs form a skeletal structure for thé C. there is one strong peak along the diagonal, which
underlying dynamics. The accuracy of this approach imindicates a significant period-1 orbit, and six pairs of points
proves as orbits with higher periods are included. In Fig. 2with reflection symmetry, which indicate period-2 orbits,
a sequence of the 512 interspike intervals (sequence, Fig.t&wo of which are highly significant. In Fig. 2, we can
a; embedding, Fig. ®) from an intracellular recording was enumerate five possible period-3 orbits, three of which are
used, and a family of period-1, -2, and -3 orbits was iden-significant. These orbits form a complex but predictable
tified. The orbit locations in a two-dimensional projection lattice of regions in which the dynamics of the neuron is
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FIGURE 3 Local dynamics around .
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0.069 s; a period-2 orbingiddle col-
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s. Red and green lines indicate unsta-
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ble and stable directions of the UPOs, 0.024
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Points mapped near identified UPOs
under the periodic orbit transform.

The same sequences of data similarly
colored are shown in Fig. & (Mid-

dle row) Deviations between pairs of ="
representative trajectories plotted in
successive time steps (connecting
lines). Bottom row Based on esti-

mated local dynamics of the UPOs, 0.024
all sequences with good prediction o »
(one-step errokx 0.01 s) for at least 0.104

two successive time steps are shown.
A, Initial points of these trajectories;
O, the subsequent iterates;, pre-
dicted positions of the circles. Lya-
punov numbers: period-1A, =
—-1.8 + 0.7, A, = —0.04 = 0.04,
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05\, = 13+ 0.2,A, = —0.22 + 0.024, SRS " M. . 7
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approximately periodic. Although we have only enumeratedstate space where trajectories close enough to the actual
orbits up to period 3, this already represents a hierarchy gberiod-2 orbit will, for a short time, bounce back and forth
12 equilibrium states of the complex dynamics of a neuronalmost periodically. In terms of our biological data, the
Similar hierarchies were found from extracelluar data at allheuron appears to fire with an approximate periodicity of a
four levels of potassium studied (7.5, 8.5,9.5, 10.5 mM]K  two-cycle, i.e., longer intervals interspersed between shorter
In the next section, we discuss one of each of the orbitgnes. However, because of intrinsic instability of the UPOs
in Fig. 2: the period-1 orbit af, = 0.069 s; a period-2 orbit and the effects of noise (or new signals coming into the
atl, = 0.047 s|,,_, = 0.076 s; and a period-3 orbitBf= neyron), this apparent periodicity will end and the system’s
0.090 s,l,-, = 0.026 s, , = 0.063 s. The positions of gypsequent behavior will next be approximated by other
these orbits, their stable and unstable directigregn and  opits. The local stability of these UPOs is typically char-

red lineg, and the data points that mapped under transforyterized by their local Lyapunov numbers (Ott, 1993). The

mation into their corresponding peaks in Fig. 2 are pIOttGdaverage duration that trajectories dwell near a UPO is de-
in the top row of Fig. 3. The points in the top row of Fig. 3

_ X e scribed by the absolute value of its largest Lyapunov num-
correspond to the intervals with the same colors in Fig. 2 ber; in discrete-time dynamics, an absolute value of a Lya-
punov number greater than 1 implies instability, and an
absolute value less than 1 implies stability.

To approximate the full dynamics, we first need to es-
It is our goal to approximate the neuron’s full dynamics tablish that the local dynamics near these UPOs is contin-
using this hierarchy by partitioning the state space intauous. In other words, close trajectories near a given UPO
regions surrounding the UPOs. The full dynamics can thershould have similar behavior. Second, we need to estimate
be approximated by piecing together the local dynamicghe local dynamics and its stability near these UPOs. Last,
within these regions. For example, the two pieces of theve need to verify that the estimated local dynamics actually
period-2 orbit (Fig. 3middle columhdefine two regions in  predict trajectories near the UPOs.

Dynamics near UPOs
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FIGURE 4 Tracking UPOs for nonstationary intracellular da@.Iifterspike interval sequence. Shaded region is the subsection of data used in Figs. 2
and 3. p) Color-coded density plots of period-1 transformed data for 74 overlapping windows as a function of time. Colors indicate probability (from 0
to 1) of transformed data density being outside the distribution of maximum peaks from 30 transformed surrogate densities. The horizontahlgxis is eve
spaced between event numbers; tic marks are at 25-s intervals.

Continuity implies that interval sequences from differenttions. A hierarchy of UPOs with both expanding and con-
times (Fig. 2a) are mapped to trajectories in state space thatracting directions is the essential ingredient for complex
stay close to each other. To illustrate this point, we chooseéeterministic dynamics.
two trajectories for each UPO that start close to each other, We next verify that the estimated local dynamics actually
and link their corresponding points with lines (Fig.r8id-  predict trajectories near the UPOs (Pawelzik and Schuster,
dle row). These trajectories follow each other closely on1991). The estimates of the dynamics near the UPO are
iteration. applied to each point in the original data to predict the next

By connecting nearby trajectories, we also graphicallypoint. All trajectories with good prediction (erret 0.01 s)
illustrate the dynamical stability near the UPO. For thefor at least two successive time steps are plotted in the last
period-1 and period-2 orbits the local dynamics can be weltow of Fig. 3. The first points of these trajectories are
described by two Lyapunov numbers (Fig. 3). In both casesndicated by triangles, subsequent iterates by circles, and
the initial deviation between the two trajectories contractspredicted positions of the circles by pluses. Prediction was
along the stable direction and expands along the unstabkxcellent for points near the period-1 and period-2 orbits.
direction. Note that for period-2 and higher, expansion andrhe dynamical fit near the period-3 orbit was less accurate,
contraction must be observed after a complete cycle, e.gas was the prediction. These results are the first rigorous
iterations 1 and 3 for period-2 and 2 and 5 for period-3. Indemonstration of a dynamically meaningful hierarchy of
contrast to the period-1 and -2 orbits, the local dynamic2JPOs in neuronal dynamics.
around the period-3 orbit has three Lyapunov numbers with
one stable and two unstable directiohsd red lines Fig. 3,

.”gh.t column). The pe'zrlod-S'; plots are two-d|men5|opal pro- Nonstationarity: temporal evolution of UPOs

jections of a three-dimensional space. Note that differences
in the number of unstable directions among the UPOs impl\Because of nonstationary, the periodic orbit analysis was
that the dynamics is nonhyperbolic (Dawson et al., 1994)done on windowed data. Columns 3 and 4 from Table 1 are
Again, one can see that the deviations between trajectorigbe total number of time windows partitioned from all of the
contract and expand along the stable and unstable diredata sets and the percentage of (nonoverlapping) windows
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FIGURE 5 Tracking period-1 UPOs for nonstationary human EEG interspike intervals. The color map is as in Fig. 4. Three short traces (5 s) of raw EEG
corresponding to different UPOs are shown. The horizontal axis is evenly spaced between event numbers; tic marks are at 200-s intervals.

in which significant period-1 orbits were found. The per- fied significant UPOs from a human hippocampal temporal
centage of time windows with significant period-1 orbits lobe focus (two of four patients; see Table 1).

was 12-28%, compared to 50—100% of experiments with

significant period-1 orbits. These percentages confirm the

intrinsic nonstationarity of these data. The period-1 OrbitSDISCUSSION

appear and disappear within the course of an experiment.

Nonstationarity is seen in the temporal evolution of pe-These results are the first extensive application of rigorous
riod-1 orbits from the intracellular measurements shown inUPO detection (So et al., 1996, 1997) to neuronal dynamics.
Fig. 4. The original interval sequence, which representsye demonstrated that UPOs are prevalent features across
cellular discharges over 5 min of recording, is plotted in theseveral scales of neuronal organization, from in vitro single
upper panel. The hierarchy of orbits shown in Figs. 2 and $reurons to large-scale ensembles in humans. Our results,
was extracted from the shaded region. The period-1 transombined with evidence from others (Pei and Moss, 1996b;
formed density plot as a function of window is shown in the Le Van Quyen et al., 1997; Braun et al., 1997; Faure and
lower panel. The statistical significance of the transformedkorn, 1997), suggest that complex neuronal dynamics con-
data density is color coded, with yellow and red indicatingtain significant deterministic components. In addition, these
high significance (red>95% confidence) for period-1 or- deterministic components are experimentally accessible
bits. Orbits, some with high degrees of significance, werefrom short biological data sets. Our findings complement
created and destroyed throughout the experiment. As ithe mounting experimental evidence that spike timing in
other physical systems (So et al., 1997; Carroll et al., 1992neuronal systems is important (Mainen and Sejnowski,
Gluckman et al., 1997), we can characterize the nonstatiort995; Hopfield, 1995).
arity of these systems by tracking their periodic orbit struc- Furthermore, we have demonstrated that hierarchies of
ture as a function of time. UPOs can be extracted from neuronal dynamics. This is

Nonstationarity was also seen from the temporal variabilimportant because one can build a model that approximates
ity of period-1 orbits from epileptic interictal spike intervals the full dynamics by counting and characterizing the first
from human EEG, as shown in Fig. 5. Three differentfew low period orbits of a hierarchy. Theoretical work
significant period-1 orbits were found during the hour be-(Ruelle, 1978; Artuso et al., 1990a) has established that such
fore an epileptic seizure, which began just after the recordhierarchies can be used to estimate basic thermodynamic
ing ended. Samples of raw EEG are shown from sectiongroperties of a dynamical system, and our work suggests
corresponding to each of these UPOs. As the seizure aphat this thermodynamic formalism can be applied to neu-
proached, the UPOs shifted to longer time intervals (0.36 s;onal data.

0.70 s, 1.23 s). Whereas the data in Fig. 5 were recorded To verify that a model based on a UPO hierarchy is valid,
from a neocortical frontal lobe focus, we have also identi-we demonstrated prediction of the experimental data
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(Pawelzik and Schuster, 1991). This type of predictiveGarfinkel, A. 1983. A mathematics for physiologgm. J. Physiol 245:
model can be used for successful parametric control of R#55-R466.
nonlinear systems, whether they are chaotic (Ott et al Garfinkel, A., M. L. Spano, W. L. Ditto, and J. N. Weiss. 1992. Controlling

1990 Christini d Colli 1995 cardiac chaosScience257:1230-1235.
) or not (Christini an oflins, )- Gluckman, B. J., E. J. Neel, T. I. Netoff, W. L. Ditto, M. L. Spano, and S. J.

A key aspect of our analysis is the ability to handle the schiff. 1996. Electric field suppression of epileptiform activity in hip-
inherent nonstationarity of biological data. When system pocampal slices]. Neurophysiol76:4202—-4205.
parameters change, the skeleton of the dynamics, the UPQOgluckman, B. J., M. L. Spano, W. Yang, M. Ding, V. In, and W. L. Ditto.
also change. Tracking paramelric changes with UPOS has 257 11269 wnstable periodic ot n nonstatonary gt
been accomplished in physical systems (Carroll et al., 1992; 55:4935-4942.
Gluckman et al., 1997); indeed, our results demonstrate thiSumbel, E. J. 1958. Statistics of Extremes. Columbia University Press,
in neuronal systems at several levels of organization. Track- New York.

ing is required for UPO-based control of nonstationaryHayashi, H., and S. Ishizuka. 1995. Chaotic responses of the hippocampal
CA3 region to a mossy fiber stimulation in vitr@rain Res.686:

systems. Furthermore, tracking could be used to detect changesg,_»qg.

in SVStem .State due' to iptrinsic parameter .Va'jiation& such asffman, R. E., W.-X. Shi, and B. S. Bunney. 1995. Nonlinear sequence-
the transition to epileptic seizures, or extrinsic effects, such dependent structure of nigral dopamine neuron interspike interval firing
as electromagnetic fields Gluckman et al., 1996). In addi- PatternsBiophys. J69:128-137.

tion. recent work (Le Van Quyen et al 1997) suggests thalflopfield, J. J. 1995. Pattern recognition computation using action potential

UPO VSi ight track tual discriminati timing for stimulus representatioNature.376:33-36.
analysis mig rack perceptual discrimination. King, C. C. 1991. Fractal and chaotic dynamics in nervous systers.

More than just forming a model for prediction and track-  Neurobiol.36:279—308.
ing, UPOs are a natural symbolic representation of a syS-athrop, D. P., and E. J. Kostelich. 1989. Characterization of an experi-
tem'’s states. As such, we propose that UPOs form a novel mental strange attractor by periodic orbRys. Rev. A40:4028—-4031.

symbolic language for neuronal dynamics. Le Van Quyen, M., J. Martinerie, C. Adam, and F. J. Varela. 1997.
Unstable periodic orbits in human epileptic activityhys. Rev. E.

56:3401-3411.
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