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ABSTRACT A new nonlinear dynamical analysis is applied to complex behavior from neuronal systems. The conceptual
foundation of this analysis is the abstraction of observed neuronal activities into a dynamical landscape characterized by a
hierarchy of “unstable periodic orbits” (UPOs). UPOs are rigorously identified in data sets representative of three different
levels of organization in mammalian brain. An analysis based on UPOs affords a novel alternative method of decoding,
predicting, and controlling these neuronal systems.

INTRODUCTION

What is the optimal way to describe the behavior of a
dynamical system? This question has a special interest for
neuroscientists, because the dynamics of the nervous system
seems intractably complex. Although much effort has been
made in recent years to characterize neuronal complexity
using tools developed to decipher nonlinear systems (Basar,
1990; Skarda and Freeman, 1987; King, 1991; Garfinkel,
1983), insight resulting from such new analysis has been
limited (Rapp, 1993). What we have learned is that there are
deterministic dynamics present in neuronal behavior from
single cells (Aihara and Matsumoto, 1986; Mpitsos et al.,
1988; Hoffman et al., 1995), from ensembles of neurons
(Chang et al., 1994; Schiff et al., 1994; Hayashi and Ishi-
zuka, 1995), and even from large-scale measurements
(Rapp et al., 1989; Casdagli et al., 1996; Scott and Schiff,
1995) such as the electroencephalogram (EEG), that cannot
be fully described with simple linear models. We have also
learned that there is synchrony between neurons that can
only be detected with nonlinear measures (Schiff et al.,
1996). Perhaps the most practical application of nonlinear
techniques to biological systems has been dynamical control
of cardiac (Garfinkel et al., 1992) and neuronal (Schiff et
al., 1994b) tissues. By exploiting the natural dynamics of
the system, these techniques were used to stabilize or de-
stabilize heart beats and neuronal firing with minimum
perturbation. In this paradigm, control was achieved
through stabilization of an “unstable periodic orbit” (UPO)
embedded within the dynamics (Ott et al., 1990).

In a mathematical space whose coordinates represent the
state of a dynamical system (state space), periodic orbits are
the equilibrium states. If all of the periodic orbits in this
abstract dynamical landscape are unstable, the system’s
temporal evolution will never settle down to any one of
them. Instead, the system’s behavior wanders incessantly in

a sequence of close approaches to these orbits. The more
unstable an orbit, the less time the system spends near it.
UPOs form the “skeleton” of nonlinear dynamics, and even
the behavior of chaotic systems can be characterized by an
infinite set of these orbits (Auerbach et al., 1987; Cvit-
anovic, 1988).

One can build a model of the dynamics of a system by
counting and characterizing its UPOs in a hierarchy of
orbits with increasing periodicity. The accuracy of such a
model can be improved by progressively adding longer
period orbits to the hierarchy. The dynamical landscape can
then be tessellated into regions of state space centered
around these UPOs (Artuso et al., 1990a,b). Orbit locations
and stabilities provide short-term prediction for the future
state of the system (Pawelzik and Schuster, 1991). Further-
more, if the system is nonstationary because of slow para-
metric variations, this can be detected through the temporal
evolution of the UPOs. With a full, possibly infinite set of
UPOs and their stabilities, one can calculate thermodynamic
properties of a dynamical system such as entropy and di-
mension. This would be of little experimental relevance
were it not for the finding of Cvitanovic and colleagues
(Auerbach et al., 1987; Artuso et al., 1990a) that good
estimates of thermodynamic properties can be obtained by
using just the short orbits—the ones most accessible exper-
imentally. Numerous theoretical systems were shown to be
well described through this approach (Artuso et al. 1990b),
but until recently procedures to rigorously identify UPOs
from noisy experimental data were inadequate.

In 1995, Witkowski et al. (1995) statistically confirmed
the existence of unstable period-1 orbits in short biological
data sets, from fibrillating dog ventricular myocardium, by
comparing the detection frequency of period-1 orbits in
experimental versus surrogate data, i.e., stochastic se-
quences generated with statistical properties similar to those
of the original data (Theiler et al., 1992). A more general
approach to UPO identification was offered by Pierson and
Moss (1995). Their method, like Witkowski’s, relied on the
recurrence of patterns in state space. By using this tech-
nique, Pei and Moss (1996a) were spectacularly successful
in establishing the existence of UPOs in the crayfish caudal
photoreceptor. Additional research has employed this recur-
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rence technique to identify UPOs in catfish electroreceptors
(Braun et al., 1997) and teleost Mauthner cells’ synaptic
noise (Faure and Korn, 1997). However, there are signifi-
cant shortcomings of a strict recurrence approach to UPO
identification. Recurrence requires that a system’s state
returns repeatedly near an orbit (Lathrop and Kostelich,
1989), yet such events may be rare in finite data sets. This
is further exacerbated in biological data sets, which are
typically short and nonstationary. In addition, whereas the
above recurrence methods principally addressed the ques-
tion of existence of UPOs, they are less suited to the
enumeration of distinct orbits, especially when hierarchies
of orbits with higher periodicity are present.

Our group has made substantial progress in the identifi-
cation of UPOs from experimental data (So et al., 1996,
1997). We developed a transformation utilizing the local
dynamics of the system such that the transformed data are
concentrated about distinct UPOs. The transformation acts
as a dynamical lens to enhance the probability measure
about the UPOs in state space. This probability enhance-
ment helps to offset the frequent scarcity of trajectories near
UPOs. In addition, we have significantly improved the
ability to identify complex higher period orbits by using
fragments of trajectories near those orbits (So et al., 1997).
This technique overcomes the problem that, if an orbit was
unstable, the system would rarely be seen to stay near the
entire orbit. We also instituted statistics via surrogate data
(Theiler et al., 1992) to establish confidence limits on the
probability that the identified UPOs were not spurious. Our
preliminary analysis demonstrated that this approach could
be successfully applied to the identification of period-1
UPOs in neuronal ensemble data (So et al., 1997). In addi-
tion, a recent report using this transform technique con-
firmed the existence of period-1 UPOs in epileptiform ac-
tivity from human cortex (Le Van Quyen et al., 1997).

We report here the first extensive application of these
methods to neuronal dynamics. We examine activity from
several organizational scales of neuronal structures: net-
work behavior from small in vitro ensembles, activity of
single cells within such ensembles, and large-scale activity
from human cortical electroencephalographs (EEGs). We
find that UPOs are present with high statistical confidence
in all of these data, and that indeed they are pervasive in
such neuronal activities. These findings suggest a novel
means of characterizing neuronal dynamics.

METHODS

Data were collected from both transversely and longitudi-
nally cut in vitro rat hippocampal slices (see Gluckman et
al., 1996 for preparation details), as well as in vivo invasive
EEG recordings from human epileptic patients. Single cell
action potential spikes of CA1 neurons were measured by
using whole-cell attached patch-clamp recordings from
slices perfused with normal artificial cerebrospinal fluid
(3.5 mM [K1]). Network burst firing activity was measured

using extracellular potential recordings from the CA3 cell
body layer, which was perfused with an elevated potassium
level (7.5–10.5 mM [K1]). Digitized human EEG was col-
lected from patients undergoing routine evaluation for epi-
lepsy surgery that required implanted subdural or depth
electrodes for medical purposes unrelated to this study.
Epileptic extracellular interictal spikes were identified from
the electrode closest to the epileptic focus. Because no
automated method can reliably discriminate human epilep-
tic spikes, we hand-edited these data sets for accuracy (Scott
and Schiff, 1995). Institutional Review Board and Animal
Research Committee approval from the Children’s National
Medical Center were obtained for this research. In each
case, spike or burst events were identified from the record-
ings, and the series of interval lengths between events was
used for analysis. The relationship between raw data, event
times,tn, and interevent intervals,In, is illustrated in Fig. 1a.

Our basic assumption is that there exists a significant
deterministic component within the seemingly noisy activ-
ity of neurons and their ensembles, and therefore UPOs can
be used to characterize the system’s dynamics. The first step
in our analysis is to use delay coordinate embedding (Tak-
ens, 1981; Sauer et al., 1991; Sauer, 1994) to reconstruct the
underlying dynamics from our experimental data. In gen-
eral, from a data sequence {xn}, delay vectorszWn in state
spaceZ with dimensionM and time lagt are given byzWn 5
(xn, xn2t , . . . , xn2(M21)t). With a proper choice of the
parametersM andt, the geometric object defined inZ by the
locus of points {zWn} will provide a model that is topologi-
cally equivalent to the original dynamics that generated the
data sequence.

To extract the unstable periodic orbits from reconstructed
state space, a transformation based on observed local dy-
namics is applied to our data (So et al., 1996, 1997). The
transformation concentrates the data around the UPOs. In
particular, one can show that for noise-free dynamics, the
probability distribution function of the transformed data will
have singularities at the true periodic orbits. This reduces
extraction of periodic orbits from experimental data to sim-
ply looking for peaks in the distribution of the transformed
data.

The probability enhancement effect of this transformation
can be illustrated by using a one-dimensional discrete-time
dynamical system,xn11 5 f (xn), wheref (xn) is a nonlinear
function that prescribes the evolution of the system statexn.
A period p orbit, x*p, is defined by the condition that the
pth-iterated image ofx*p is againx*p, i.e.,

f + f +· · ·+ fÇ ~x*p! 5 x*p,
p

where+ denotes functional composition. We assume that the
underlying dynamics described by the functionf (x) is un-
known to us, but that the local behavior of the dynamics,
f 9(x) 5 df/dx (x), can be estimated from a local least-squares
fit to the experimental data. The periodic orbit transform
g(xn, k) of xn for period-1 orbitsx*:f (x*) 5 x* is then
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defined as

g~xn, k! ;
xn 2 s~xn, k! z xn21

1 2 s~xn, k!
,

where

s~xn, k! 5 f 9~xn! 1 k z ~xn 2 xn21!

is a function defined by the estimated local dynamicsf 9(xn)
and byk, an adjustable parameter of the transform. Periodic
orbit transforms for higher dimension and periodicity can be
analogously defined (So et al., 1997). With some algebra, it
can be shown that for period-1 orbitsx*, g(x*, k) 5 x* and
dg/dx (x*, k) 5 0, independent ofk. Therefore, the Taylor’s
expansion ofg(x, k) nearx* is approximately described by
a quadratic function,g(x, k) > x* 1 a(x 2 x*)2, wherea is
a constant. After rewriting this equation, we have (g(x, k) 2
x*) > a(x 2 x*)2. This equation explains the probability-
enhancing effect of the transform nearx*. If we start with a
uniformly distributed set of data points, the probability that
a data point will land in a small interval with lengthe
aroundx* is proportional toe. Under the transformation, the
same points will now be concentrated within a smaller

interval with length proportional toe2, thus enhancing the
probability measure aroundx*. In practice, UPOs are found
by looking for sharp peaks in the spatial distribution of the
transformed data.

However, in a real experimental setting, data sets are
usually contaminated by mixtures of dynamical and obser-
vational noise. In these cases, the observed sharp peaks in
the distribution of transformed data are blurred into broad
maxima, and can even be completely washed out by large
noise. Comparison with amplitude-adjusted Fourier trans-
form surrogates (Theiler et al., 1992) can be used to assess
the dynamical significance of the observed peaks. Each
surrogate is a realization of a linear stochastic model of the
data formed with the same amplitude distribution and ap-
proximately the same autocorrelation function as the origi-
nal data. Therefore, we do not expect UPO structure to exist
in the surrogates. By using multiple realizations of the
surrogate data and the statistics of extremes (Gumbel,
1958), we can estimate the probability that peaks observed
from our data are statistically significant. In particular, for a
specific peak observed in our transformed data density, we
can estimate the probability that a maximal peak with
greater amplitude could be found in the transformed surro-

FIGURE 1 Period-1 UPO extraction from dynamics
of neuronal ensemble in a hippocampal slice (8.5 mM
[K1]). (a) Extracellular field potential with event
times, tn, and interburst intervals,In. (b) Sequence of
interburst intervals. (c) Dynamical representation of
intervals in a two-dimensional delay embedded state
space (In versusIn21). Colored sequences inb andc are
data points that visited near the identified period-1
orbit. Gray arrows are stable and unstable directions of
the orbit. (d) Density of transformed data (black line)
and mean density of transformed surrogate data (green
line). (e) Probability (from 0 to 1) of transformed data
density being outside the distribution of maximum
peaks observed from 30 transformed surrogate densi-
ties. The tallest peak, which reached above the 95%
line, marks the position of a significant period-1 orbit at
In 5 1.04 s. (f ) Sequence of points that approached
along the stable and departed along the unstable direc-
tion of the period-1 orbit. One-step predicted valuesE

of the actual experimental dataF, from the estimated
local dynamics of the period-1 orbit. Lyapunov num-
berslu 5 1.5 6 0.3, ls 5 20.6 6 0.2.
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gate densities. In our previous works (So et al., 1996, 1997)
we have demonstrated the ability of our technique to extract
UPOs from numerical models with both dynamical and
observational noise components.

An additional problem with biological systems is their
inherent nonstationarity. Such nonstationarity can be asso-
ciated with parameter changes, which would be reflected in
changes in the UPO structure. If the system parameters
change slowly with respect to the natural time scale of the
dynamics, one may expect the periodic orbit structure to be
resolvable within short data windows in time (Pei and Moss,
1996b). Even so, when a system is operating near its bifur-
cation points, its periodic orbit structure might experience
sudden changes, including orbit creation and destruction.
We therefore base the following analysis on windowed data,
in which the windows are chosen short enough to approx-
imate stationary system states, but long enough to accumu-
late good statistics.

RESULTS

Statistically significant UPOs were found from ensemble,
single-cell, and human recordings, as summarized in Table 1.
We exhaustively searched for period-1 orbits within all of
our collected data. The first two columns in Table 1 are,
respectively, the total number of experiments performed
and the percentage of experiments with statistically signif-
icant period-1 orbits within at least one window. In these
analyses we considered observed period-1 orbits to be sta-
tistically significant only if the distribution function of the
transformed data had peaks larger than 95% of maximal
peaks observed from the surrogate data sets (30–100).

For the extracellular ensemble burst-firing, about half of
the experiments in the lower potassium ranges (7.5–9.5 mM
[K1]) and 90% of the experiments with higher potassium
levels (10.5 mM [K1]) had statistically significant period-1
orbits. For the intracellular measurements from single cells
within ensembles, 100% of the experiments had period-1
UPOs. These results represent the first statistical confirma-
tion of the prevalence of UPOs in the spiking/bursting

behavior of mammalian neuronal dynamics across two dis-
tinct levels of organization.

To extend our periodic orbit analysis to larger scale
neuronal ensembles, we have collected intervals of interictal
spikes from human EEG data. These data were collected
from four different epileptic patients during the hour before
the onset of a seizure. Two of the four patients’ interictal
spike sequences contained statistically significant period-1
UPOs. These results represent a third level of neuronal
organization for which significant UPOs were observed.

In what follows we illustrate this analysis technique in
detail. First, we discuss the detection of period-1 orbits from
a short time window of extracellular in vitro data (Fig. 1).
Next, we describe the extraction of a hierarchy of orbits,
through period-3, using intracellular data (Figs. 2 and 3).
We then demonstrate that the UPOs can be used to predict
the observed neuronal behavior. Finally, we show how
windowed analysis of long data series can be used to track
nonstationary systems. This is illustrated with both intracel-
lular (Fig. 4) and human EEG data (Fig. 5).

Detection of UPOs

A typical example of a period-1 orbit found in the extracel-
lular recordings is shown in Fig. 1. This figure is laid out in
the same order as the steps in our analysis. First, we extract
event times and interevent intervals from the raw data (Fig.
1 a). We next make a dynamical representation of the
interval sequence (Fig. 1b) in a delay embedded state space
(Fig. 1 c). We then apply the period-1 transform on each
data point in this state space, and compute the distribution of
transformed data (Fig. 1d, black line). For statistical com-
parison, surrogate data sets are also transformed, and their
mean density shown (Fig. 1d, green line). The maximal
peaks from each surrogate are then extracted, and their
distribution computed. Finally, the density of the trans-
formed data is interpreted in terms of the probability of
being outside the distribution of surrogate maximal peaks
(Fig. 1 e). The tallest peak in Fig. 1e, which crosses the
95% line, indicates the existence of a period-1 orbit atIn 5
1.04 s.

The colored sequences in Fig. 1,b andd, are trajectories
that visited near the identified period-1 orbit. These points
were chosen because, under the transformation, they map
into the peak at the period-1 orbit in Fig. 1d. Once we
identify points that map into an orbit, we use those points to
estimate the local dynamics near that orbit in state space.
The gray arrows in Fig. 1,c and f, are estimated unstable
and stable directions of the identified orbit—in this case, a
saddle node. In a two-dimensional state space, trajectories
near an unstable saddle node will roughly approach it along
the stable direction and then depart along the unstable
direction. An example of this behavior is illustrated by the
closed circles in Fig. 1f.

By using the estimated local dynamics, one can predict
the next point in the series based on the current one. Spe-

TABLE 1 Summary of period-1 orbit detection from
extracellular measurements from small ensembles in
hippocampal slices, intracellular measurements from single
cells within those ensembles, and human cortical EEG

No. of
exp.

%
significant

No. of
windows

%
significant

Extracellular
7.5 mM K1 8 50 33 12
8.5 mM K1 9 45 44 9
9.5 mM K1 11 55 71 14
10.5 mM K1 11 91 67 21

Intracellular
3.5 mM K1 6 100 250 28

Human EEG 4 50 16 19
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cifically, we use a linear fit to the local dynamics to map the
current deviation from the orbit in state space to the devi-
ation at the next iterate. Predicted forward iterates for the
closed circles in Fig. 1f are plotted as open circles. The
predicted values are excellent estimates of the observed next
intervals. The ability to rigorously locate UPOs and to
extract their local dynamics for prediction forms the basis
for control of chaotic (Ott et al., 1990) and nonchaotic
(Christini and Collins, 1995) systems.

UPO hierarchy

As discussed above, UPOs form a skeletal structure for the
underlying dynamics. The accuracy of this approach im-
proves as orbits with higher periods are included. In Fig. 2,
a sequence of the 512 interspike intervals (sequence, Fig. 2
a; embedding, Fig. 2b) from an intracellular recording was
used, and a family of period-1, -2, and -3 orbits was iden-
tified. The orbit locations in a two-dimensional projection

of a four-dimensional state space can be identified from the
color coded-density plots shown for period-2 (Fig. 2c) and
period-3 (Fig. 2d) transformations. (In these plots, red
indicates transform densities with significance greater than
95%.)

For discrete-time dynamics in a delay embedded state
space, a periodp orbit will comprisep individual pieces,
which are related to each other through a cyclic symmetry.
Therefore, in our two-dimensional space, all period-1 orbits
lie along the diagonal, all period-2 orbits are pairs of points
with reflection symmetry across the diagonal, and period-3
orbits are triplets of points with triangular symmetry. In Fig.
2 c, there is one strong peak along the diagonal, which
indicates a significant period-1 orbit, and six pairs of points
with reflection symmetry, which indicate period-2 orbits,
two of which are highly significant. In Fig. 2d, we can
enumerate five possible period-3 orbits, three of which are
significant. These orbits form a complex but predictable
lattice of regions in which the dynamics of the neuron is

FIGURE 2 Hierarchy of UPOs from a single cell. (a) Sequence of interspike intervals (seconds) and short trace of raw data (zero mV corresponds to top
of vertical calibration bar). (b) Data in two-dimensional delay-embedded state space. (c and d) Color-coded density plots of period-2 and period-3
transformed data revealing a family of period-2 (left graph) and period-3 orbits (right graph). Colors indicate probability (from 0 to 1) of transformed data
density being outside the distribution of maximum peaks observed from 100 transformed surrogate densities. The most significant peaks, with probability
greater than 95%, are shown in red. Six possible period-2 orbits, including two strongly significant ones, can be identified inc, and five possible period-3
orbits, including three strongly significant ones, can be identified ind.
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approximately periodic. Although we have only enumerated
orbits up to period 3, this already represents a hierarchy of
12 equilibrium states of the complex dynamics of a neuron.
Similar hierarchies were found from extracelluar data at all
four levels of potassium studied (7.5, 8.5, 9.5, 10.5 mM [K1]).

In the next section, we discuss one of each of the orbits
in Fig. 2: the period-1 orbit atIn 5 0.069 s; a period-2 orbit
at In 5 0.047 s,In21 5 0.076 s; and a period-3 orbit atIn 5
0.090 s,In21 5 0.026 s,In22 5 0.063 s. The positions of
these orbits, their stable and unstable directions (green and
red lines), and the data points that mapped under transfor-
mation into their corresponding peaks in Fig. 2 are plotted
in the top row of Fig. 3. The points in the top row of Fig. 3
correspond to the intervals with the same colors in Fig. 2a.

Dynamics near UPOs

It is our goal to approximate the neuron’s full dynamics
using this hierarchy by partitioning the state space into
regions surrounding the UPOs. The full dynamics can then
be approximated by piecing together the local dynamics
within these regions. For example, the two pieces of the
period-2 orbit (Fig. 3,middle column) define two regions in

state space where trajectories close enough to the actual
period-2 orbit will, for a short time, bounce back and forth
almost periodically. In terms of our biological data, the
neuron appears to fire with an approximate periodicity of a
two-cycle, i.e., longer intervals interspersed between shorter
ones. However, because of intrinsic instability of the UPOs
and the effects of noise (or new signals coming into the
neuron), this apparent periodicity will end and the system’s
subsequent behavior will next be approximated by other
orbits. The local stability of these UPOs is typically char-
acterized by their local Lyapunov numbers (Ott, 1993). The
average duration that trajectories dwell near a UPO is de-
scribed by the absolute value of its largest Lyapunov num-
ber; in discrete-time dynamics, an absolute value of a Lya-
punov number greater than 1 implies instability, and an
absolute value less than 1 implies stability.

To approximate the full dynamics, we first need to es-
tablish that the local dynamics near these UPOs is contin-
uous. In other words, close trajectories near a given UPO
should have similar behavior. Second, we need to estimate
the local dynamics and its stability near these UPOs. Last,
we need to verify that the estimated local dynamics actually
predict trajectories near the UPOs.

FIGURE 3 Local dynamics around
three representative orbits from the
identified hierarchy in Fig. 2: a
period-1 orbit (left column) at In 5
0.069 s; a period-2 orbit (middle col-
umn) at In 5 0.047 s,In 5 0.076 s;
and a period-3 orbit (right column) at
In 5 0.090 s,In 5 0.026 s,In 5 0.063
s. Red and green lines indicate unsta-
ble and stable directions of the UPOs,
which can be identified by the inter-
sections of the lines. (Top row)
Points mapped near identified UPOs
under the periodic orbit transform.
The same sequences of data similarly
colored are shown in Fig. 2a. (Mid-
dle row) Deviations between pairs of
representative trajectories plotted in
successive time steps (connecting
lines). (Bottom row) Based on esti-
mated local dynamics of the UPOs,
all sequences with good prediction
(one-step error, 0.01 s) for at least
two successive time steps are shown.
‚, Initial points of these trajectories;
E, the subsequent iterates;1, pre-
dicted positions of the circles. Lya-
punov numbers: period-1,lu 5
21.8 6 0.7, ls 5 20.04 6 0.04;
period-2,lu 5 21.14 6 0.09, ls 5
20.3 6 0.2; period-3,lu 5 21.6 6
0.5, lu 5 1.3 6 0.2, ls 5 20.22 6
0.07.
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Continuity implies that interval sequences from different
times (Fig. 2a) are mapped to trajectories in state space that
stay close to each other. To illustrate this point, we choose
two trajectories for each UPO that start close to each other,
and link their corresponding points with lines (Fig. 3,mid-
dle row). These trajectories follow each other closely on
iteration.

By connecting nearby trajectories, we also graphically
illustrate the dynamical stability near the UPO. For the
period-1 and period-2 orbits the local dynamics can be well
described by two Lyapunov numbers (Fig. 3). In both cases,
the initial deviation between the two trajectories contracts
along the stable direction and expands along the unstable
direction. Note that for period-2 and higher, expansion and
contraction must be observed after a complete cycle, e.g.,
iterations 1 and 3 for period-2 and 2 and 5 for period-3. In
contrast to the period-1 and -2 orbits, the local dynamics
around the period-3 orbit has three Lyapunov numbers with
one stable and two unstable directions (two red lines, Fig. 3,
right column). The period-3 plots are two-dimensional pro-
jections of a three-dimensional space. Note that differences
in the number of unstable directions among the UPOs imply
that the dynamics is nonhyperbolic (Dawson et al., 1994).
Again, one can see that the deviations between trajectories
contract and expand along the stable and unstable direc-

tions. A hierarchy of UPOs with both expanding and con-
tracting directions is the essential ingredient for complex
deterministic dynamics.

We next verify that the estimated local dynamics actually
predict trajectories near the UPOs (Pawelzik and Schuster,
1991). The estimates of the dynamics near the UPO are
applied to each point in the original data to predict the next
point. All trajectories with good prediction (error, 0.01 s)
for at least two successive time steps are plotted in the last
row of Fig. 3. The first points of these trajectories are
indicated by triangles, subsequent iterates by circles, and
predicted positions of the circles by pluses. Prediction was
excellent for points near the period-1 and period-2 orbits.
The dynamical fit near the period-3 orbit was less accurate,
as was the prediction. These results are the first rigorous
demonstration of a dynamically meaningful hierarchy of
UPOs in neuronal dynamics.

Nonstationarity: temporal evolution of UPOs

Because of nonstationary, the periodic orbit analysis was
done on windowed data. Columns 3 and 4 from Table 1 are
the total number of time windows partitioned from all of the
data sets and the percentage of (nonoverlapping) windows

FIGURE 4 Tracking UPOs for nonstationary intracellular data. (a) Interspike interval sequence. Shaded region is the subsection of data used in Figs. 2
and 3. (b) Color-coded density plots of period-1 transformed data for 74 overlapping windows as a function of time. Colors indicate probability (from 0
to 1) of transformed data density being outside the distribution of maximum peaks from 30 transformed surrogate densities. The horizontal axis is evenly
spaced between event numbers; tic marks are at 25-s intervals.
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in which significant period-1 orbits were found. The per-
centage of time windows with significant period-1 orbits
was 12–28%, compared to 50–100% of experiments with
significant period-1 orbits. These percentages confirm the
intrinsic nonstationarity of these data. The period-1 orbits
appear and disappear within the course of an experiment.

Nonstationarity is seen in the temporal evolution of pe-
riod-1 orbits from the intracellular measurements shown in
Fig. 4. The original interval sequence, which represents
cellular discharges over 5 min of recording, is plotted in the
upper panel. The hierarchy of orbits shown in Figs. 2 and 3
was extracted from the shaded region. The period-1 trans-
formed density plot as a function of window is shown in the
lower panel. The statistical significance of the transformed
data density is color coded, with yellow and red indicating
high significance (red,.95% confidence) for period-1 or-
bits. Orbits, some with high degrees of significance, were
created and destroyed throughout the experiment. As in
other physical systems (So et al., 1997; Carroll et al., 1992;
Gluckman et al., 1997), we can characterize the nonstation-
arity of these systems by tracking their periodic orbit struc-
ture as a function of time.

Nonstationarity was also seen from the temporal variabil-
ity of period-1 orbits from epileptic interictal spike intervals
from human EEG, as shown in Fig. 5. Three different
significant period-1 orbits were found during the hour be-
fore an epileptic seizure, which began just after the record-
ing ended. Samples of raw EEG are shown from sections
corresponding to each of these UPOs. As the seizure ap-
proached, the UPOs shifted to longer time intervals (0.36 s,
0.70 s, 1.23 s). Whereas the data in Fig. 5 were recorded
from a neocortical frontal lobe focus, we have also identi-

fied significant UPOs from a human hippocampal temporal
lobe focus (two of four patients; see Table 1).

DISCUSSION

These results are the first extensive application of rigorous
UPO detection (So et al., 1996, 1997) to neuronal dynamics.
We demonstrated that UPOs are prevalent features across
several scales of neuronal organization, from in vitro single
neurons to large-scale ensembles in humans. Our results,
combined with evidence from others (Pei and Moss, 1996b;
Le Van Quyen et al., 1997; Braun et al., 1997; Faure and
Korn, 1997), suggest that complex neuronal dynamics con-
tain significant deterministic components. In addition, these
deterministic components are experimentally accessible
from short biological data sets. Our findings complement
the mounting experimental evidence that spike timing in
neuronal systems is important (Mainen and Sejnowski,
1995; Hopfield, 1995).

Furthermore, we have demonstrated that hierarchies of
UPOs can be extracted from neuronal dynamics. This is
important because one can build a model that approximates
the full dynamics by counting and characterizing the first
few low period orbits of a hierarchy. Theoretical work
(Ruelle, 1978; Artuso et al., 1990a) has established that such
hierarchies can be used to estimate basic thermodynamic
properties of a dynamical system, and our work suggests
that this thermodynamic formalism can be applied to neu-
ronal data.

To verify that a model based on a UPO hierarchy is valid,
we demonstrated prediction of the experimental data

FIGURE 5 Tracking period-1 UPOs for nonstationary human EEG interspike intervals. The color map is as in Fig. 4. Three short traces (5 s) of raw EEG
corresponding to different UPOs are shown. The horizontal axis is evenly spaced between event numbers; tic marks are at 200-s intervals.
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(Pawelzik and Schuster, 1991). This type of predictive
model can be used for successful parametric control of
nonlinear systems, whether they are chaotic (Ott et al.,
1990) or not (Christini and Collins, 1995).

A key aspect of our analysis is the ability to handle the
inherent nonstationarity of biological data. When system
parameters change, the skeleton of the dynamics, the UPOs,
also change. Tracking parametric changes with UPOs has
been accomplished in physical systems (Carroll et al., 1992;
Gluckman et al., 1997); indeed, our results demonstrate this
in neuronal systems at several levels of organization. Track-
ing is required for UPO-based control of nonstationary
systems. Furthermore, tracking could be used to detect changes
in system state due to intrinsic parameter variations, such as
the transition to epileptic seizures, or extrinsic effects, such
as electromagnetic fields Gluckman et al., 1996). In addi-
tion, recent work (Le Van Quyen et al., 1997) suggests that
UPO analysis might track perceptual discrimination.

More than just forming a model for prediction and track-
ing, UPOs are a natural symbolic representation of a sys-
tem’s states. As such, we propose that UPOs form a novel
symbolic language for neuronal dynamics.
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through subcontract 85X-SX516V with Oak Ridge National Laboratory.
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