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Abstract— Assessing dependence between two sets of spike
trains or between a set of input stimuli and the corresponding
generated spike trains is crucial in many neuroscientific ap-
plications, such as in analyzing functional connectivity among
neural assemblies, and in neural coding. Dependence between
two random variables is traditionally assessed in terms of
mutual information. However, although well explored in the
context of real or vector valued random variables, estimating
mutual information still remains a challenging issue when the
random variables exist in more exotic spaces such as the
space of spike trains. In the statistical literature, on the other
hand, the concept of dependence between two random variables
has been presented in many other ways, e.g. using copula,
or using measures of association such as Spearman’s ρ, and
Kendall’s τ . Although these methods are usually applied on
the real line, their simplicity, both in terms of understanding
and estimating, make them worth investigating in the context of
spike train dependence. In this paper, we generalize the concept
of association to any abstract metric spaces. This new approach
is an attractive alternative to mutual information, since it can be
easily estimated from realizations without binning or clustering.
It also provides an intuitive understanding of what dependence
implies in the context of realizations. We show that this new
methodology effectively captures dependence between sets of
stimuli and spike trains. Moreover, the estimator has desirable
small sample characteristic, and it often outperforms an existing
similar metric based approach.

I. INTRODUCTION

Many neuroscientific applications such as identifying func-

tional connectivity among neural assemblies [1], building

stimulus response models based on input-output observations

[2], and neural coding [3], rely on assessing dependence

between two sets of spiking activity, or a set of stimuli

and the corresponding spike trains. As in communication

systems and machine learning [4], neuroscientists often rely

on mutual information as a measure of dependence [5], where

the use of mutual information is motivated by Shannon’s

mathematical interpretation of information and entropy.

Formally, mutual information between a pair of random

variables (X,Y ) that assume values in the joint space X ×
Y with joint probability law (X,Y ) ∼ Pxy and marginal

probability laws X ∼ Px and Y ∼ Py respectively, is defined

as,

MI =

∫

log

(

dPxy

dPx⊥y

)

dPxy
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where Px⊥y = PxPy . Given another measure µ on X × Y
such that Pxy ≪ Px⊥y ≪ µ, mutual information can also be

expressed as

MI =

∫

log

(

dPxy/dµ

dPx⊥y/dµ

)

dPxy

dµ
dµ

where ≪ implies absolute continuity.

Estimating mutual information in the Euclidean space

i.e., X = R
m and Y = R

n is well explored, and it is

comparatively simpler since in Euclidean space, µ can be

chosen to be the Lebesgue measure i.e., µ(dx,dy) = dxdy,

which simplifies the definition of mutual information to

MIe =

∫

log

(

fxy(x, y)

fx(x)fy(y)

)

fxy(x, y)dxdy

where fz(z) = dPz/dz defines the probability density

function. Mutual information in Euclidean space is usually

estimated by estimating the individual probability densities

by either a Parzen type approach [6] or a nearest neighbor

based approach [7]. Moreover, if the random variables are

categorical, then µ can be considered to be the counting

measure, and the definition further simplifies to

MIc =
∑

(x,y)

Px,y log

(

Pxy

PxPy

)

where these probabilities can be easily estimated by counting.

On the other hand, there are no well-defined estimators of

mutual information in non-Euclidean spaces, such as space

of spike trains, that lack an appropriate base measure µ1.

Mutual information between two sets of spike trains are often

computed by representing them either in the Euclidean or

in the categorical space. The simplest approach to represent

a spike train in the Euclidean space is to use binning

where each bin acts as an independent axis in the Euclidean

space. However, this approach has several limitations. First,

binning destroys the time structure of the spike trains since

it disregards the ordering of the bins. Second, the precision

of spike times is controlled by the size of the bin, and third,

although spike time precision can be preserved by making

the binsize arbitrarily small, a smaller binsize effectively

increases the dimensionality of the resulting Euclidean space

that in turn makes the estimation poor due to sparsity.

To alleviate these issues, Victor and Purpura proposed an

alternate approach [8]. In their approach, the set of spike

trains is divided into clusters using a suitable binless distance

metric, and the labels of the clusters are treated as random

1Notice that mutual information is invariant to the choice of µ, however
the estimators of mutual information usually rely on a certain µ to estimate
the density function



variables, i.e., effectively representing a subset of spike trains

as a category. Although this approach prevents binning, it

has several limitations on its own. First, this method relies

on the clustering method, second, it is only sensitive to the

number of spike trains that fall in a cluster, rather than the

relative positions of these spike trains in the cluster, and third,

it requires comparatively more spike train realizations per

cluster to effectively estimate the mutual information. Re-

cently Victor has proposed yet another approach for capturing

mutual information by dividing the spike trains in groups

by their respective spike counts, and computing the mutual

information of the individual groups by mapping them into

Euclidean spaces with the dimension corresponding to the

number of spikes [9]. Although technically precise, this

approach suffers from poor estimation when the spike trains

have a flat spike count distribution, i.e., while dividing them

in groups, each group becomes sparse. This problem is

usually tackled by limiting the maximum number of spikes,

and projecting any spike trains with more number of spikes

to a lower dimensional spike train i.e., spike train having less

spikes. However, the process of projecting the spike trains is

non-invertible, and hence, lossy. Therefore, the validity of

the estimated mutual information remains questionable (see

section II-A for details).

Due to the inherent difficulty in estimating mutual infor-

mation, it is natural to ask whether the dependence between

sets of spike trains can be assessed in other ways. In the

statistical literature the concept of dependence has been ex-

plored beyond the concept of mutual information, especially

in the context of real valued random variables, e.g. copulas or

measures of association such as Spearman’s ρ and Kendall’s

τ , have been used to understand and quantify dependence

[10]. Although, mostly defined on the real line, the simplicity

of these approaches, both in terms of understanding and

computation, make them worth exploring in the context of

capturing dependence between two sets of spike trains. In

this paper, we propose a generalization of the concept of

association to arbitrary metric spaces that is suitable for

capturing dependence between sets of spike trains, since the

space of spike train can be treated as a metric space [11],

[8], [12]. Moreover, the proposed approach satisfies many

desired criteria of a measure of dependence such as (1) it is

parameter free, (2) it is bounded between 0.5 and 1, where

0.5 is reached upon independence and 1 is reached upon

strict dependence, and (3) it conveys a clear understanding

of dependence in the context of the realizations. This is

advantageous in contrast to the concept of mutual informa-

tion which, although well understood in the context of the

probability laws, is often obscure after being estimated from

the realizations, especially in the case of continuous random

variables.

A measure of dependence can be applied in many dif-

ferent areas of neuroscientific exploration such as functional

connectivity analysis and neural coding. In this paper, we

explore the concept of dependence for spiking activity due

to stimuli or due to other spiking activity. In particular,

we use a simulated data where the stimuli controls the

phase of periodic spiking activity, and an experimental data

where the stimuli is electrical microstimulation with different

amplitudes and durations. In the experimental data, we apply

the proposed method to assess the ranges of parameters

that increase the dependence between the stimulation and

the resulting spiking activity. In addition, we also explore

a synthetic example of dependence between two sets of

spiking activity. Our simulations reveal that the proposed

approach is a suitable tool for neuroscientific exploration,

and is potentially useful for further refining the experimental

design in this context.

The rest of paper is organized as follows. In section II

we start by briefly describing the concept of association for

real valued random variables, and then, generalize this idea

to introduce a generalized measure of association. In section

III, we apply the proposed approach on synthetic data, and

compare its performance against an existing clustering-based

method for estimating mutual information (or transmitted

information [11]), and in section IV we analyze its utility

on the experimental data. In section V, we conclude the

paper with a brief summary of the proposed approach, and

an overview of the future work.

II. METHOD

We start this section by briefly discussing the existing

literature on measures of association, and then, describe a

generalization of this approach to capture dependence in the

context of spike trains.

A. Background

The simplest measure of association is the correlation as

introduced by Pearson [10]. Given realizations {(xi, yi)}
n
i=1

of a pair of random variables, correlation is defined as
∑

i xiyi. The intuitive purpose of defining correlation in such

a way is to capture whether large values of random variable

X are associated with large values of random variable Y .

This approach, however, only captures linear dependence

between two random variables i.e., it is maximum when the

random variables are linear functions of each other. Spear-

man generalized this idea and considered the correlation

between the ranks of {xi}
n
i=1 and {yi}

n
i=1 as a measure of

association [13]. Unlike Pearson’s correlation, Spearman’s

approach, also known as Spearman’s ρ, captures monotone

dependence i.e., the dependence is maximum when the

random variables are monotonic functions of each other and

not just linear. Kendall also discussed a similar idea but from

a different perspective, and quantified dependence by the

difference between the number of concordant and discordant

realization pairs, where two pairs (xi, yi) and (xj , yj) are

called concordant if (xi − xj) and (yi − yj) have the same

signature or they are called discordant [14]. Both Spearman’s

and Kendall’s approach, also known as Kendall’s τ , capture

the same notion of dependence as correlation, i.e., whether

large values of X are associated with large values of Y , but

unlike Pearson’s approach, these approaches judge a value

being large only in the context of the rest of the realizations,
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i.e., by considering its rank rather than its absolute value. An

interesting attribute of measures of association is that they

provide a clear understanding of what dependence implies in

the context of realizations. This attribute is often missing in

the context of other measures of dependence such as mutual

information, where, although the statistical meaning, i.e., the

function of the random variable is well understood, the corre-

sponding estimator is not. For example, mutual information

as a statistic is invariant to one-to-one transformation of the

random variables, and it reaches its maximum when two

random variables are functionally related, but these attributes

can not be satisfied by estimators of mutual information since

the estimators must be regularized. Therefore, in the context

of the realizations, the exact meaning of mutual information

still remains to be explored. The concept of association, on

the other hand, is well understood in the context of the

realizations, and therefore, is an attractive alternative to the

mutual information.

B. Generalized association

We generalize the idea of association as follows: given

a set of realizations {(xi, yi)}
n
i=1, we consider it to be

dependent if pairs of close realizations of one random

variable, say X , are associated with pairs of close realization

of the other random variable, Y . This approach is intuitive

in the sense that if two random variables are related by a

continuous mapping then we expect this statement to be true.

However, defining dependence in this way does not imply an

appropriate approach to quantify it. In fact, this statement

can be materialized in several intuitive ways, e.g. using

graph-theoretic approaches as explored in [15]. We discuss a

conceptually different approach for quantifying dependence,

such that it satisfies some intuitive properties that a measure

of dependence should possess. For example, the dependence

value should be bounded, and the two extremes should

belong to independence and strict dependence. Moreover, the

notion of strict dependence should be well understood, and

finally, since we aim at finding dependence between two sets

of spike trains, the proposed measure should be well defined

in the context of two metric spaces, and not just the Euclidean

space.

Following these requirements, we define the closeness of

two realizations in terms of the respective distance metrics

of the spaces where the random variables assume values in.

Notice that these two spaces X and Y can be very different

with different distance metrics. For example, X could be the

real line for stimulus parameters, whereas Y could be the

space of spike trains. Then given realizations {(xi, yi)}
n
i=1,

we capture dependence by finding the nearest neighbor, say

xj , of a realization, say xi, in one of the spaces X , and

observing how far the corresponding realizations yi and yj

are in the other space Y . Say these realizations are rank ri

apart (in the context of the other realizations), then we repeat

this process for all samples xi’s, and build a measure of

dependence by quantifying an appropriate attribute of these

ranks. We simplify our approach in the following algorithm,

1) For all i ∈ {1, . . . , n}, repeat the following;

2) Find xj∗ closest to xi in terms of dX i.e.,

j∗ = arg min
j 6=i

dX (xi, xj),

3) Find rank ri of yj∗ in terms of dY i.e.,

ri = #{j : j 6= i, dY(yj , yi) ≤ dY(yj∗ , yi)}.

where dZ denotes the associated metric of the space Z .

Notice that if two random variables are independent, then

any rank ri should take any value in the set {1, . . . , n− 1}
with equal probability, i.e., the ranks should be uniformly

distributed. On the other hand, we say that the two variables

are strictly dependent if these ranks are always 1. This

happens when the nearest neighbors of any realizations

of X are also the nearest neighbor of the corresponding

realizations of Y . For example, a trivial case is X = Y .

Finally, if the two random variables are dependent, then these

ranks would tend to be close to 1, i.e., the more dependent

two random variables are, the more skewed the distribution

of ranks would be.

Therefore, following the requirements mentioned above,

we quantify dependence as the area under the empirical

cumulative distribution function of the realizations ri’s. We

call this estimate the generalized measure of association or

GMA. Notice that the minimum value of this estimator is,

thus, 0.5 when ri’s are uniformly distributed, whereas the

maximum value of the estimator is 1 when the random

variables are strictly dependent. However, notice that we do

not claim the minimum dependence value to be a sufficient

condition for independence. This attribute is very similar to

the measures of association where zero association does not

guarantee independence. Moreover, since we are working

with empirical estimates, the minimum value is not strictly

0.5 but it can be less than 0.5, and approaches 0.5 when

n increases. This nature is very similar to any consistent

estimator of independence. Finally, although we have not

found a formal proof, we conjecture that the proposed

measure does not assume value between 0 and 0.5 (except

for the inaccuracy’s due to finite samples), and therefore, we

always use a one-sided test to judge the significance of an

acquired dependence value.

C. Adjustment for ties

In the derivation of generalized association, we have

implicitly assumed that the estimated ranks do not overlap,

i.e., the distances of the rest of the realizations from a

certain realization are distinct. Although this often happens

when the random variables are continuous, this condition

can be easily violated. For example, consider the realizations

{(1, 2), (2, 1), (3, 2)}. Then if we take (xi, yi) = (2, 1), then

both (1, 2) and (3, 2) share the same distance from xi = 1
in terms of dX . Therefore, we have to decide which is the

nearest neighbor i.e., xj = 1 or xj = 3. On the other

hand, even if we randomly decide on either of them then

for any of the two cases, yj = 2, and therefore, we need to

decide whether ri = 1 or ri = 2. Although this example is

trivial, similar situation can be easily encountered in practice.
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For example, if one uses a spike metric with no temporal

precision, then two spike trains with same number of spikes

are treated the same [8]. To tackle this situation, therefore, it

is important to design an estimator that effectively captures

the dependence when several realizations overlap or share

the same distance from a certain realization. To capture this,

we consider a probabilistic approach of ranking. In essence,

instead of providing a certain realization (xi, yi) a rank ri

with probability 1, we spread the probability evenly to several

ranks, say r
(1)
i , . . . , r

(k)
i . To simplify our explanation, we

start by considering a discrete random variable R for the

ranks, and estimate its probability mass function over the

iterations as follows,

1) Assign P(R = r) = 0 ∀r ∈ {1, . . . , (n− 1)}
2) For all i ∈ {1, . . . , n}, repeat the following;

3) Find the set of points {xj∗ : j∗ ∈ J } closest to xi in

terms of dX i.e.,

J = {j∗ : j∗ = arg min
j 6=i

dX (xi, xj)}.

4) For all j∗ ∈ J , find the spread of ranks i.e., ri,max

and ri,min of yj∗ in terms of dY such that

ri,max = #{j : j 6= i, dY(yj , yi) ≤ dY(yj∗ , yi)} and

ri,min = #{j : j 6= i, dY(yj , yi) < dY(yj∗ , yi)}.

5) For all rank values ri,min < r ≤ ri,max, assign

P(R = r)← P(R = r) + 1/n/ |J | /(ri,max − ri,min).

It can be easily verified that
∑

P(R = r) = 1. Then,

we compute GMA as the area under the CDF of the rank

variable R. The adjusted measure is bounded between 0.5
and 1 where the lower and the upper limit is achieved under

independence and strict dependence. Moreover, when the

samples and distance values are distinct, then the former

approach is a special case of the latter approach.

D. Examples

To further illustrate the idea of generalized association, we

provide two simple examples in Euclidean space, and show

how the proposed method captures dependence.

1) Clayton copula: Consider the bivariate Clayton copula

i.e., C(u, v) = (u−ρ + v−ρ − 1)−1/ρ with zero mean unit

variance Gaussian marginals. Here the coefficient ρ controls

the dependence, and a higher value of ρ implies higher

dependence between X and Y . Figure 1 shows the distribu-

tion of the rank variable, and the corresponding dependence

captured by GMA for different values of ρ. We observe

that the distribution of the rank variable is flat when ρ is

small, and it gets more skewed when ρ increases, whereas

the estimated GMA values show a monotonic increment.

2) Multivariate Gaussian: Consider two 3-dimensional

zero mean identity covariance Gaussian vectors, where the

first element of the first vector is correlated with the second

element of the second vector. Figure 2 shows the distribution

of the rank variable, and the estimated dependence value by

the proposed framework for different values of the correlation

coefficients. As expected, we observe a similar effect as
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ρ = 1, Gen. Asso. = 0.56224

ρ = 2, Gen. Asso. = 0.63083

ρ = 3, Gen. Asso. = 0.68305

ρ = 4, Gen. Asso. = 0.72367

ρ = 5, Gen. Asso. = 0.75251

ρ = 6, Gen. Asso. = 0.77767

ρ = 7, Gen. Asso. =  0.7987

ρ = 8, Gen. Asso. = 0.81576

ρ = 9, Gen. Asso. = 0.82946

Fig. 1. Illustration of rank distribution and estimated dependence values.
For this example, the data has been generated from a bivariate Clayton
copula.
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ρ =    0, Gen. Asso. = 0.50017

ρ = 0.11, Gen. Asso. = 0.50211
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Fig. 2. Illustration of rank distribution and estimated dependence values.
For this example, the data has been generated from a multivariate Gaussian
distribution.

in the previous example. However, we notice that in this

particular example, the dependence value is not close to 1
even though ρ is close to 1. This happens since when ρ = 1,

only two elements of the random vectors become identical,

whereas the rest of the elements still remain independent, and

therefore, the two random vectors are only weakly dependent.

III. SIMULATION

In this section, we apply the proposed approach on simu-

lated data, and compare its performance against the method

proposed by [8]. Before proceeding, we briefly discuss the

notion of distance on the space of spike trains. The distance

between two spike trains can be defined in several ways, for

example, see [8] and [16]. However, we choose to explore

the measure suggested by [8], and leave a detailed study on

the effect of other distance metrics as future work.
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Fig. 3. Simulation II-D.2: Rasters for φ ∈ {0, π/2, π, 3π/2} and m =

0.5. Inhomogeneous Gamma renewal process with average spike rate of 20
Hz.

A. Victor-Purpura spike train metric

The spike-distance metric explored by Victor and Purpura

[8] is a cost-based edit distance between sequences of time

events. The distance is defined as the minimum cost of

transforming one spike train to the other, by three simple

operations i.e., shifting, adding, and removing, where each

operation has an associated cost. Given two spike trains

x = {xi}
m
i=1 and y = {yi}

n
i=1, each spike, say xi, is either

matched to a single spike from the other spike train, say

yj , to form a matching (xi, yj) with a cost of q|xi − yj |,
or the spike is deleted from xi at cost 1. Any unmatched

spikes in y is assessed a cost of 1 each. Therefore, the

sole parameter q controls temporal precision, i.e., the cost

of moving a spike in time versus simply removing it and

perhaps adding it somewhere else. Let M = {(xi, yj), . . .}
be a set of matchings where a particular spike can appear in

at most 1 element. Then the distance is defined as [17]

d
(q)(x, y) = min

M





∑

(xi,yj)∈M

q|xi − yj |+ (m + n− 2|M |)



 .

For the case q = 0, if m = n then d
(0)(x, y) = 0, and if

m 6= n, then d
(0)(x, y) = |m−n|. For q =∞, unless spikes

exactly align in time, they must be removed and re-added to

align since no shifting is allowed, thus the minimum cost is

d
(∞)(x, y) = m + n. For 0 < q <∞, this metric takes into

account the temporal positions of the spikes, and q controls

the temporal resolution i.e., how much separated the spikes

are in time. It has been recently shown that this metric is

essentially a L1 metric and that it can be extended to Lp

spaces [17]. In addition, the metric has also been extended

to multiple spike trains [18], but here we only concentrate

on single spike trains.

1) Implementation: The framework for the simulation

analysis was conducted using the Spike Train Analysis

Toolkit, a neuroinformatics resource funded by the NIH’s

Human Brain Project. The toolbox has efficient C/C++ im-

plementations of many information theoretic quantities [19];

of interest to us is its implementation of Victor Purpura spike

train metric and the clustering-based mutual information

estimator that we use for a baseline comparison in a sim-

ulated experiment. The default parameters of the clustering-

based mutual information algorithm were used. For the actual

metric we used Victor Purpura spike metric across a range

of q, which controls the temporal precision. The generalized

association code was implemented in MATLAB and the

simulations were run concurrently using the same distance

evaluations provided by the Spike Train Analysis Toolkit.

B. Dependence between stimulus and spike trains

We explore the characteristics of the generalized asso-

ciation to capture the dependence between a variable that

controls the characteristics of simulated spike trains. We

expand on an experiment on temporal phase discrimination

used in [8]. The goal is to identify the dependence the phase

imposes on cyclic spiking activity. The underlying spiking is

an inhomogeneous Gamma renewal process, with underlying

marginal intensity function

λ(t) = R0[1 + m cos(2πt/T + φ)].

To form the Gamma process with shape k, where k is a posi-

tive integer value, a Poisson process with rate kλ(t) is formed

and every kth spike is kept. The resulting spike train is much

more regular than an inhomogeneous Poisson process, which

lends itself for more precise temporal comparisons. Spikes

were generated with different phase φ chosen from a discrete

set Φ of uniformly spaced phases in the interval (0, 2π). Like

the original experiment the base firing rate is R0 = 20 Hz,

the period was T = 0.25 ms, and length of spike trains

generated is 1s. The tuning depth m was varied to alter

the difficulty of the dependence estimation. The set of spike

trains used for m = 0.5 and |Φ| = 4 is shown in Figure 3.

Each value of φ serves as a category for estimating mutual

information, but for generalized association these values are

treated as continuous with distance metric, d(φ1, φ2) =
cos−1(cos(φ1 − φ2)). Thus, the measure of association can

use the ordering to better quantify the dependence in this

case. We investigate how well the methods capture depen-

dence between φ and the resulting spike trains as the tuning

depth m and the number of discrete phases |Φ| varies. Having

only discrete phases Φ actually under utilizes GMA, as

GMA can be applied to continuously distributed data, but

using discrete values facilitates a direct comparison with the

existing clustering-based method.

Each dependence measurement was calculated on 100

bootstrap trials. On each run the dependence was also calcu-

lated on shuffled categories to generate an independent surro-

gate distribution. We use a hypothesis test for independence

with size 0.05 to test the statistical power of the methods.

For tuning depth m = 0 the spike trains are independent of

φ.

The simulation results for a tuning depth of m = 0.5
(Figure 4) show the dependence value across temporal pre-

cisions q. It peaks at a temporal precision of q = 16s−1,

this is the quarter-wave of the underlying period of the

spike generation. Similar results for mutual information are
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Fig. 5. Simulation II-D.2: Dependence measures for (in)dependence for
different number of classes and samples when q = 16s

−1.

shown in [8]. GMA shows a similar trend across q, but it

has a sharper peak surrounding the peak temporal precision,

whereas, the mutual information is peaked for larger range

of values; thus, GMA better highlights the optimal temporal

precision. Across different sample sizes the variance of both

methods decrease. Note that the small sample size bias

developed in the shuffled surrogate is not removed from

the mutual information calculation to illustrate its behavior

across parameters; whereas, GMA has no change in bias for

different sample sizes. The means of estimated GMA stay

the same over different sample sizes whereas the means of

the estimated mutual information decrease when sample size

is increased. It should be noted that for different numbers of

categories, |Φ|, the theoretical value of mutual information

should be log2 |Φ| bits.

We further examine how the methods are able to assess

(in)dependence at tuning depth m = 0.2(m = 0) while the

temporal precision for the metric is held at q = 16 (Figure

5). It is evident that both methods are able to detect the

dependence. In addition, both methods show a decrease in
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Fig. 6. Simulation III-C: Dependence between two sets of spike trains.
Dotted line is the 0.95 quantile of the surrogate data, whereas solid line is
the mean ± standard deviation of the actual GMA values. Both surrogate
and actual values have been computed 128 times.

variance as the number of samples per category increases;

however, at small number of samples per category GMA

has much lower variance; an important characteristic for

neuroscience applications where the number of trials per

stimulus or exactly repeated stimuli are limited. In addition,

there is no change in the means of the estimated GMA

values for different sample sizes. Overall, the results lend

confidence that GMA is a stable measure that is able to

capture association across changes in number of categories

and samples, and is not plagued by need for bias correction

that is needed with mutual information estimators.

C. Dependence between sets of spike trains

In this paper, we mostly focus on assessing dependence

between input stimulus and the resulting spike trains. How-

ever, in this section, we provide a simple example to show

that the proposed approach can also be applied to capture

dependence between two sets of spike trains i.e., when both

the spaces X and Y are spaces of spike trains. In order to do

that, we follow [20] to generate two sets of spike trains with

known covariance structure. Notice that [20] only proposes

an approach to generate binned spike trains. Therefore, to

collect the time instances of the events, we generate binary

spike trains i.e., spike trains with at most one spike per bin,

and consider the beginning of the bin to be the spike timing.

For each i = 1, . . . , n, we set the mean spiking probability

for both spike trains to 0.05 and generate 100 bins each.

This is equivalent to generating two 1s long spike trains

with mean firing rate 5Hz each. We vary the covariance of

the binary spike trains in the allowed range, from −10−4

to 9.9× 10−3, and present the estimated dependence values

in Figure 6 using Victor Purpura metric with q = 20 and

n = 40 realizations. It can easily observed that GMA can

successfully detect the dependence among the spike train

observations. Notice that, in a practical situation the two sets

of spike trains might require two different metrics to capture

their respective statistics. However, here we have used the

same q for both since they have the same marginal statistics.

6



First Channel current over time

Adjacent Channel current over time

Stimulation period: constant 500 ms

 

Duration: varies in discrete steps 

between 0.175 and 0.250 ms

Amplitude: varies in discrete steps 

between 0.025 and 0.100 mA

Amplitude

Duration

Stimulation 1 Stimulation 2

Fig. 7. Experiment IV: Description of the microstimulation waveforms.

IV. EXPERIMENTAL DATA

We apply the proposed method to quantify the depen-

dence between microstimulation parameters and the neural

responses they elicit, in particular, the dependence of the

neural response (spike trains) recorded in the somatosensory

cortex (S1) on the electrical microstimulation administered in

the thalamic somatosensory region. The neural spiking used

in this analysis is from a rat with two chronically implanted

16-channel (2×8) tungsten micro-wire arrays (Tucker Davis).

Neuronal activity was recorded from one array in the cortex

(S1) using the Plexon multichannel acquisition processor.

Action potentials were detected using a constant threshold

and were sorted by a semi-automated clustering procedure

(SortClient) using the first 3 principal components of the

detected waveforms. The second array was positioned in the

ventral posterior lateral (VPL) region of the thalamus.

Prior to the recording session, anesthesia was induced by

isofluorane followed by a Nembutal injection and maintained

with isofluorane. A pair of thalamic channels with response

to cutaneous touch of a forepaw digit were selected as

the channels for microstimulation. Bipolar microstimulation

(AM Systems Model 2200 Isolator) was applied to two

adjacent electrodes in the thalamic array. Each stimulation

consisted of a biphasic square pulse (Figure 7). The pulse

duration and current amplitude were varied, but the stim-

ulations were always at 500 ms apart. During the session,

19 distinct pairs of pulse duration and current amplitude

were applied, with 140 responses from each pair randomly

permuted throughout the recording. We analyze 480 ms of

spiking data after stimulus onset on 14 cortical channels

after each stimulus onset for analysis. This time window

is much larger than the majority of the response from

microstimulation that occurs within 100 ms of stimulation.

The goal of this analysis is to assess the dependence of the

neural response on the stimulation parameters. However, first,

we investigate the significance of the estimated dependence

values using bootstrap sampling. There are 100 bootstrap

trials with 40 trials, out of 140, for each stimulation setting.

We use the proposed estimator with the Victor Purpura spike

distance as metric across a range of temporal precision q
values. Euclidean distance is used in the two dimensional
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Fig. 8. Experiment IV: Generalized association across temporal precision
for all 14 cortical channels. Dotted lines indicate the 95th percentile of the
surrogate.

stimulation space of amplitude and duration. Both gener-

alized association and mutual information are calculated

for each sample and for a shuffled version that destroys

the dependence between stimulation and spiking. We show

the mean values of GMA and the 0.95 quantiles of the

corresponding shuffled data in Figure 8. It is evident that

these values are relatively low, but still significant on all

14 channels over all temporal precisions. Also, we observe

a clear peak around 50-100 Hz, which implies that the

precision relevant to the stimulation is within 10 to 20 ms.

We set the value of q to 50.

Since the stimulation is discrete valued, a conditioned

dependence analysis can be performed to investigate the

dependence between spiking activity and a particular pa-

rameter while fixing the other parameter to a certain value.

We consider this approach to investigate the effect of effect

of amplitude and duration on an individual basis. We show

the conditional dependence (i.e., the dependence between

spiking activity and amplitude keeping the duration fixed,

and the dependence between spiking activity and duration

keeping the amplitude fixed), the marginal dependence (i.e.,

the dependence between spiking activity and amplitude, and

the dependence between spiking activity and duration), and

the joint dependence (i.e., the dependence between spiking

activity and amplitude–duration together) for all the 14

channels in Figure 9. As expected, we observe that the joint

dependence is always statistically significant on all channels.

However, the marginal and conditional dependences, on the

other hand, reveal more interesting structures.

We observe that the duration parameter alone (i.e., from

the marginal dependence perspective) does not have any ef-

fect on the spiking activity, whereas the amplitude parameter

alone imposes a strong dependence on the spiking activity.

However, it should be noted that our observation is only

limited to the particular values of duration parameters used

in the experiment i.e., in the range 125-250µs. Moreover, the

conditional dependence between the spiking activity and the
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Fig. 9. Experiment IV: Conditional, joint, and marginal generalized
association for each of the 14 channels. The black/dotted-line/unfilled is
the 0.95 quantile of the surrogate values, whereas the red/solid-line/filled is
the 0.5 quantile of the actual values. The values at the top are the average
power over the 14 channels, the null hypothesis being independence. It
is easy to observe that the dependence between spiking activity and joint
of amplitude–duration or marginal of amplitude is strong (i.e., power 1)
whereas dependence between spiking activity and marginal of duration is
insignificant (i.e., power 0.05). Also, conditioned on the amplitude values,
the dependence between spiking activity and duration is not very significant
(i.e., highest power 0.52), whereas conditioned on certain duration values
(i.e., from 175 to 225 µs) the dependence between spiking activity and
amplitude is very strong (i.e., power more than 0.9).

duration given the amplitude is not significant (or relatively

low) i.e., given the range of duration under investigation

it is rather immaterial for how long a certain amplitude

has been applied. A similar situation is also observed when

the dependence between spiking activity and amplitude is

assessed given particular values of durations, but only upto

an extent. That is, we observe that given a small duration

spiking activity does not depend on the amplitude too much.

However, for a longer duration spiking activity becomes

very sensitive to the amplitude applied. These observations

provide more insight in the effect of these parameters on the

spiking activity. Thus, they can be used to find the range of

durations where there is significant dependence between the

stimulation amplitude and the spiking response, and that in

turn, can be exploited for further refining the experimental

design in this study.

V. SUMMARY AND FUTURE WORK

In this paper, we have explored a novel understanding

of dependence in the context of two random variables that

assume values in arbitrary metric spaces. We have derived

a simple estimator, and have applied this approach in the

context of assessing dependence between sets of stimuli

and spike trains in both simulated and experimental data.

The simulations reveal promising result, and show that the

proposed methodology can indeed be used for neuroscientific

exploration.

However, certain areas of the proposed approach still need

some attention. For example, in this paper, we have only

explored the Victor Purpura metric as a distance metric

between two spike trains. However, there exists a number

of different spike train metrics in the literature that can

be potentially used in this framework. Next, the proposed

method only addresses a measure of association and not

a measure of dependence in strict sense since it does not

guarantee that two random variables are independent when

it achieves minimum value. The exact implication of this

feature still remains unexplored. Finally, we have applied

our method for exploratory purposes. The true potential of

this approach will be investigated in the context of further

applications.
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