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Abstract—This paper introduces a novel temporal difference
algorithm to estimate a value function in reinforcement learning.
This is a kernel adaptive system using a robust cost function
called correntropy. We call this system correntropy kernel tem-
poral differences (CKTD). This algorithm is integrated with Q-
learning to find a proper policy (Q-learning via correntropy
kernel temporal differences). The proposed method was tested
with a synthetic problem, and its robustness under a changing
policy was quantified. The same algorithm was applied to the
decoding of a monkey’s neural states in a reinforcement learning
brain machine interface (RLBMI) in a center-out reaching task.
The results showed the potential advantage of the proposed
algorithm in the RLBMI framework.

I. I NTRODUCTION

Brain machine interfaces (BMIs) have been an active re-
search subject because of their potential for a wide range ofap-
plications once they reach maturity. Special efforts have been
directed towards developing technologies that will ultimately
help neuromuscular disabilities [1], [2]. Neural decodingof
motor signals is one of the main tasks that needs to be executed
by BMIs. The main goal of neural decoding is to characterize
the electrical activities of groups of neurons, that is, to identify
neural patterns that correlate with a given behavior task. For
this, we need a learning system which can identify the patterns
in an autonomous way. This process is a fundamental step
towards the design of prosthetic devices that are directly
controlled by brain.

Reinforcement learning (RL) is one of the representative
learning schemes which can adapt and adjust to subtle neural
variations. In RL, there is no need for off line training sessions
since the system learns directly and continuously from the
environment through reinforcement, so RL is well suited for
the neural decoding stage of BMI applications.

A BMI architecture based on reinforcement learning
(RLBMI) was introduced in [3], and successful applicationsof
this approach can be found in [4], [5]. In the RLBMI structure
(Figure 1), the agent learns how to translate the neural states
into actions based on reward values from the environment. In
fact, the BMI user has no direct access to the actions, and
the agent, or BMI decoder, must interpret the user’s brain
activity correctly to facilitate the rewards [3]. Notice that both
systems act symbiotically by sharing the external device to
complete their tasks, and this co-adaptation allows continuous

synergistic adaptation between the BMI decoder and the user
even in changing environments.

For the agent, the proper decoding of the neural states is
essential to accurately control the external device that interacts
with the physical environment.Q-learning via kernel temporal
differences (Q-KTD)(λ) [4] has been applied to the agent for a
neural decoding problem in reaching tasks, and the algorithm’s
capability to find the proper neural state to action directions
has been quantified. In Q-KTD(λ), temporal difference (TD)
learning integrated with kernel methods, kernel temporal dif-
ferences (KTD)(λ) [4], is used to estimate an action value
functionQ, and the estimated value function is used to find a
proper policy based onQ-learning [6].

Note that one of the most popularly utilized figures of
merit in TD methods is the mean square error (MSE), in fact,
KTD(λ) uses this criterion. However, in RL, the choice of the
cost function has been under appreciated, because it depends
on the role of the value function. When the goal is to obtain
a desired controller, and the value estimation is only used as
a sub-routine of the algorithm, MSE may not be the most
meaningful choice [7].

In addition, since the policy is not fixed inQ−learning,
it is required that the system explores the environment and
learns under changing policies. The system should respond
accordingly and be able to disregard large changes that may
result from exploration. Therefore, a cost function which can
bring a robust system is preferred.

Correntropy is a generalized correlation measure between
two random variables first introduced in [8]. Maximum corren-
tropy criterion (MCC) has been applied to obtain robust meth-
ods for adaptive systems in supervised learning [9], [10]. Using
MCC, a system can be adapted in such a way that a similarity
measure between desired and predicted signals is maximized.
In particular, kernel maximum correntropy (KMC), which is
a blend between kernel least mean square (KLMS) [11] and
MCC, was proposed in [10]. The basic idea of KMC is that
input data is transferred to an reproducing kernel Hilbert
space (RKHS) using a nonlinear mapping function, and MCC
is applied as a cost function to minimize the error. It has
been shown that the kernel maximum correntropy algorithm
accurately approximates nonlinear systems, and it is able to
reduce the detrimental effects of various types of noise in



Fig. 1. The decoding structure of RLBMI [3].

comparison with the MSE criterion.
In this paper, we introduce a novel value function approxi-

mation algorithm by integrating the kernel temporal difference
algorithm with the maximum correntropy criterion. We call
this algorithm the correntropy kernel temporal differences
(CKTD). We extend CKTD to estimate a policy based onQ-
learning, and this gives rise to theQ-learning via correntropy
kernel temporal difference (Q-CKTD) algorithm. We explore
how the new cost function influences the performance on
reinforcement learning problems including open loop RLBMI
experiments.

II. CORRENTROPY KERNEL TEMPORAL
DIFFERENCES

A. Maximum Correntropy Criterion

Correntropy is defined in terms of inner products of vectors
in a kernel feature space

C(X,Y ) = E[G(X − Y )] (1)

whereX and Y are two random variables, andG is a shift
invariant kernel [8]. Correntropy can be set as a cost function
[9]

J = E[G(e)] ≈
1

N

N
∑

n=1

G(e(n)), (2)

where e represents an error signal; in supervised learning,
the error is the difference between desired signald and the
predictiony at timen, e(n) = d(n)− y(n). Here, we employ
the Gaussian kernelG(e(n)) = exp(−e(n)2/2h2

c). For a
system described by parametric mappingy = f(x|θ), the
parameterθ can be adapted such that the correntropy of the
error signal is maximized:

maximize
θ

N
∑

n=1

G(e(n)). (3)

This is called the maximum correntropy criterion (MCC).

B. Correntropy Kernel Temporal Differences

Using the ideas of both kernel least mean square (KLMS)
[11] and maximum correntropy criterion [9], kernel maximum
correntropy (KMC) is introduced in supervised learning [10].
To maximize the error correntropy, we can use stochastic
gradient ascent on the new cost function in the feature space. In

kernel maximum correntropy, the gradient of the cost function
can be expressed as follows:

∇Jn =
∂C(d(n), y(n))

∂f
=

1

h2
c

e(n)G(e(n))φ(x(n)), (4)

wherehc is the correntropy kernel size. Also, the estimated
KMC function at timen+ 1 is obtained as

f ← f + η
n
∑

i=1

[

exp

(

−e(i)2

2h2
c

)

e(i)φ(x(i))

]

. (5)

In a multi-step prediction problem, given the observed
sequence of input-output pairs(x(1), d), (x(2), d), · · · ,
(x(m), d), we look for a functionf ∈ H, whereH is a
reproducing kernel Hilbert space (RKHS), such that

f(x(n)) = 〈f, φ(x(n))〉 = 〈f, κ(x(n), ·)〉, ∀f ∈ H (6)

approximating the desired outputd ≈ y(n) = f(x(n)).
In the supervised setting, the functionf can only be updated

once we have observed the whole sequence ofm inputs
becaused only becomes available at timem. This yields
updates forf of the form

f ← f +

m
∑

n=1

∆fn, (7)

where∆fn = η(d − 〈f, φ(x(n))〉)φ(x(n)). By taking d ,

y(m+ 1), the error can be written as

d− y(n) =

m
∑

k=n

(y(k + 1)− y(k)), (8)

and we can obtain an update forf without having observed
the desired signald [12].

Thus, in the multistep prediction problem, the temporal
difference (TD) error can be linked to the KMC algorithm
by using the recursion (8);

f ← f + η

m
∑

n=1

[

exp

(

−(
∑

m

k=n
eTD(k))2

2h2
c

)

×

m
∑

k=n

eTD(k)φ(x(n))

]

,

(9)

where theeTD(k) represents the temporal difference (TD)
error defined asy(k+1)−y(k). When we assign the eligibility
trace rate [12] asλ = 0, the correntropy kernel temporal
difference (CKTD) update rule can be derived as follows

f ← f + η

m
∑

n=1

[

exp

(

−eTD(n)2

2h2
c

)

eTD(n)φ(x(n))

]

. (10)

This equation also satisfies (9) in the case of single step
predictions (m = 1). Note that compared to the KTD(0)
update rule in [4], CKTD contains an extra weighting term
which is the exponential of the negative squared error. This
extra weighting term compensates for large errors which may
disrupt the learning process since they force the system to
make unnecessarily large adjustments.



C. Q-learning via Correntropy Kernel Temporal Differences

The basic idea ofQ-learning is that when the action
valueQ is close to the optimal action valueQ∗, the policy,
which is greedy with respect to all action values for a given
state, is close to optimal; that is,π ≥ π′ if and only if
Qπ(x, a) ≥ Qπ

′

(x, a) for all statesx ∈ X and actions
a ∈ A. Therefore, the optimal action value functionQ∗ can
be obtained byQ∗(x(n), a(n)) = maxπ Q

π(x(n), a(n)).
Here, we can employ correntropy kernel temporal differ-

ences (CKTD) to estimate the action value functionQ which
is defined as

Q(x(n), a(n)) = E[R(n)|x(n), a(n)]. (11)

Here, we use theinfinite-horizondiscounted model forR(n)
which is defined as

∑

∞

k=0
γkr(n+k+1) whereγ is a discount

factor satisfying0 < γ < 1, andr is an instantaneous reward.
Therefore, the update rule forQ-learning via correntropy
kernel temporal differences (Q-CKTD) is given by

f ← f + η

m
∑

n=1

[r(n+ 1) + γmax
a

Q(x(n+ 1), a)

−Q(x(n), a(n))φ(x(n))],

(12)

whereQ represents the estimated action value by CKTD; for
a discrete set of action,Q(x(n), a = l) can be computed as

Q(x(n), a = l) = η

n−1
∑

i=1

[exp
(

−eTDr(i)
2/2h2

c

)

× eTDr(i)Ik(i)κ〈x(n), x(i)〉],
(13)

whereeTDr(i) denotes a temporal difference error defined as

eTDr(i) = r(i+1)+γmax
a

Q(x(i+1), a)−Q(x(i), a(i) = k).

(14)
Recall that the rewardr(i + 1) corresponds to the action
selected by the current policy with inputx(i) because it is
assumed that this action causes the next input statex(i + 1).
Here, Ik(i) is an indicator vector with the same size as the
number of outputs; only thekth entry of the vector is set to
1, and the rest of the entries are0. The selection of the action
unit k at time i can be based on anǫ-greedy method [13].
Therefore, only the weight (parameter vector) corresponding
to the winning action gets updated.

III. EXPERIMENTAL RESULTS

A. Mountain Car Task

We first carry out experiments on a famous episodic task in
control problems known as “Mountain-car task.” There is a car
driving along a mountain track, and the goal of this task is to
reach the top of the right side hill (Figure 2). The challenge
in this task is that there are regions near the center of the
hill where maximum acceleration of the car is not enough to
overcome the force imposed by gravity. Thus, if the system
simply tries to maximize short term rewards, it would fail to
reach the goal. In this case, the only way to reach the goal is to

Fig. 2. The Mountain-car task. Around the center of the hill,the force of
gravity is stronger than the car’s engine.

first accelerate backwards, even though it is further away from
the goal, and then drive forward with full acceleration. This
is a representative example to evaluate the system’s capability
in finding a proper policy to achieve a goal in reinforcement
learning.

The details of the model are based on [14]. The system
undergoes30 trials to learn the policy. At each trial, the
initial states are drawn randomly from−1.2 ≤ p ≤ 0.5 and
−0.07 ≤ v ≤ 0.07 wherep andv are car position and velocity
respectively. The system is initialized when the first trialstarts,
and each trial has104 maximum number of steps. At each
trial, the number of steps is counted, and it is averaged over
the 30 trials and50 Monte Carlo runs. For each Monte Carlo
run, the same set of30 initial values are used. For theǫ-
greedy method, we vary the exploration rate to confirm how
the system learns under changing policy. We start with a totally
random policy,ǫ = 1. This value is kept until200th step, and
then it is switched toǫ = 0. When the exploration rateǫ is 0,
the performance shows exactly what the system has been able
to learn from the random exploration.

With the optimal parametersη = 0.3, h = 0.2, and
hc = 3, Q-learning via correntropy kernel temporal differ-
ence (Q-CKTD) shows a mean and standard deviation of
349.87 ± 368.07, whereas Q-KTD shows558.57 ± 1012.3.
This observation reveals the positive effect that robustness
of correntropy as a cost function brings to learning under
changing policies.

We further observe the average step number at each trial
over50 Monte Carlo runs (Figure 3). Q-CKTD takes a larger
number of steps at the beginning, but as learning progresses
(trial number increases), it requires a significantly fewersteps
per trial. We can also see that the system adapts to the
environment and is able to find a better policy. Note that until
the200th step, the policy is completely random, and thus, both
algorithms show an average number of steps larger than200.
The trials that reach the goal even under a random policy are
able to do so because their initial positions are close enough
to the goal.
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Fig. 3. Average number of steps per trial in comparison of Q-KTD and Q-
CKTD. Note that the same30 initial states are applied for50 Monte Carlo
runs.

B. Open Loop RLBMI Experiment

We apply theQ-learning via correntropy kernel temporal
difference (Q-CKTD) algorithm to neural decoding of a mon-
key’s neural states on a center-out reaching task aiming at 4
targets (right, up, left, and down). The data employed in this
experiment is provided by JoeFrancisLab at SUNY Downstate
Medical Center. A female bonnet macaque is trained for a
center-out reaching task allowing8 action directions. The
monkey only observes how the position of a computer cursor
on a screen changes over time, and its neural states from the
motor cortex (M1) are recorded while the monkey is watching
the screen change through the duration of the experiment.
Every trial starts at the center point, and the distance fromthe
center to each target is4cm; anything within a radius of1cm
from the target point is considered as a valid reach (Figure 4).

Fig. 4. The center-out reaching task allowing 8 directions.The numbers
indicate the target indices.

Here, open loop experiments are conducted, so only144
successful trials are used for neural decoding. Spike times
from 49 units are converted to firing rates using a100ms
window, and a9th order tap delay line is applied; hence,490
dimensions are used to represent the neural states. Each trial
allows2 steps to approach the task. The distance between the
center and the target is covered in a single step. After input
states are preprocessed by normalizing their dynamic range
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Fig. 5. Comparison of the average success rates of Q-KTD and Q-CKTD.
The solid line shows the mean success rates, and the dashed line shows the
standard deviation over50 Monte Carlo runs.

between−1 and 1, they are input to the system. The output
represents the8 possible directions, and among the8 outputs,
one action is selected byǫ-greedy method.

Based on the selected direction, the computer cursor posi-
tion is updated. A positive reward value+1.5 is assigned to
the system when the cursor reaches the reward zone (anywhere
within a 0.5 radius from an assigned target). Otherwise, the
system earns negative reward−0.6. A trial is terminated once
it passes2 steps or receives the positive reward.

We applyγ = 0.9, ǫ = 0.01, andη = 0.5. The filter kernel
size h for Q-CKTD is chosen based on the average of pair
wise distances of the input states. Withh = 1, Q-CKTD shows
improvement over Q-KTD when the correntropy kernel size
hc = 1 is applied to the first two epochs and changed to
hc = 0.8 at the third epoch. The success rates are obtained
at each epoch as the average number of successful trials over
the4 targets. These success rates are further averaged over50
Monte Carlo runs (Figure 5).

As with Q-KTD, Q-CKTD exploits the advantages of both
temporal difference learning and kernel methods. Since the
same data is repeated in each epoch, it is expected that the two
algorithms converge and find a proper policy. Additionally,
because in the open loop experiment, neural states are not
changing in response to task execution, the improvement of
Q-CKTD is not dominant here. However, individual success
rates of Q-CKTD for each target shows improvements versus
Q-KTD (Figure 6). The figure employs the same parameter set
as in Figure 5, but the results are obtained from a single run.
In the beginning of learning, Q-KTD focus only on certain
directions, so it does not explore the full repertoire of options
(Figure 6(a)). However, the learning variation over each direc-
tion in Q-CKTD is smaller in comparison with Q-KTD; in Q-
CKTD the system attempts to explore more directions during
learning (Figure 6 (b)). When the task requires multiple steps
and the search space is high dimensional, this property will
be very useful because it should improve convergence time.
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(a) Q-KTD.
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Fig. 6. The success rates of each target over the1st through5th epochs.
Target indices1, 3, 5, and7 represent right, up, left, and down respectively.

IV. CONCLUSIONS

We introduced a novel policy estimation algorithm: Q-
learning via correntropy kernel temporal differences (Q-
CKTD). The main idea of CKTD is to use correntropy instead
of mean squared error as an objective function which guides
the learning process in kernel temporal differences.

We compared the performance between Q-CKTD and Q-
KTD first on a simulated control problem. The results showed
the robustness of Q-CKTD under changing policy. In addition,
we applied the proposed algorithm to open loop RLBMI exper-
iments. The experimental results showed similar convergence
to Q-KTD in this simple task, but we were able to see that the
Q-CKTD explored the action space better. These results imply
that our developed methodology can be useful in relevant
practical scenarios. In RLBMI frame, we expect that the true
advantage of Q-CKTD will occur in closed-loop experiments
of more realistic tasks, which require multisteps to reach the
target.

Further work on fine tuning the correntropy kernel size is
still necessary; a principled method to select the correntropy
kernel size is under development. Moreover, further theoretical
analysis of cost functions in reinforcement learning is an
ongoing effort.
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