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Abstract—This paper introduces a novel temporal difference synergistic adaptation between the BMI decoder and the user
algorithm to estimate a value function in reinforcement leaning.  even in changing environments.
This is a kernel adaptive system using a robust cost function For the agent, the proper decoding of the neural states is

called correntropy. We call this system correntropy kerneltem- . . .
poral differences (CKTD). This aigorithm is integrated with Q- essential to accurately control the external device thatacts

learning to find a proper policy (Q-learning via correntropy ~ With the physical environmeng)-learning via kernel temporal
kernel temporal differences). The proposed method was testi differences (Q-KTD)A) [4] has been applied to the agent for a
with a synthetic problem, and its robustness under a changi@ neural decoding problem in reaching tasks, and the algoisth
policy was quantified. The same algorithm was applied to the canapility to find the proper neural state to action direwtio

decoding of a monkey’s neural states in a reinforcement leaing - .
brain machine interface (RLBMI) in a center-out reaching task. has been quantified. In Q-KTDYJ, temporal difference (TD)

The results showed the potential advantage of the proposed l€arning integrated with kernel methods, kernel tempoifal d
algorithm in the RLBMI framework. ferences (KTD)A) [4], is used to estimate an action value

function ), and the estimated value function is used to find a
proper policy based ofy-learning [6].

Brain machine interfaces (BMIs) have been an active re-Note that one of the most popularly utilized figures of
search subject because of their potential for a wide range-of merit in TD methods is the mean square error (MSE), in fact,
plications once they reach maturity. Special efforts hasenb KTD()\) uses this criterion. However, in RL, the choice of the
directed towards developing technologies that will ultieta cost function has been under appreciated, because it depend
help neuromuscular disabilities [1], [2]. Neural decodiofg on the role of the value function. When the goal is to obtain
motor signals is one of the main tasks that needs to be exkcuedesired controller, and the value estimation is only used a
by BMIs. The main goal of neural decoding is to characterize sub-routine of the algorithm, MSE may not be the most
the electrical activities of groups of neurons, that isdenitify meaningful choice [7].
neural patterns that correlate with a given behavior task. F In addition, since the policy is not fixed i)—learning,
this, we need a learning system which can identify the padterit is required that the system explores the environment and
in an autonomous way. This process is a fundamental sleprns under changing policies. The system should respond
towards the design of prosthetic devices that are directigcordingly and be able to disregard large changes that may
controlled by brain. result from exploration. Therefore, a cost function whiemnc

Reinforcement learning (RL) is one of the representatit®ing a robust system is preferred.
learning schemes which can adapt and adjust to subtle neuraCorrentropy is a generalized correlation measure between
variations. In RL, there is no need for off line training Seas  two random variables first introduced in [8]. Maximum coren
since the system learns directly and continuously from thopy criterion (MCC) has been applied to obtain robust meth
environment through reinforcement, so RL is well suited favds for adaptive systems in supervised learning [9], [18]nY
the neural decoding stage of BMI applications. MCC, a system can be adapted in such a way that a similarity

A BMI architecture based on reinforcement learningheasure between desired and predicted signals is maximized
(RLBMI) was introduced in [3], and successful applicatiafis In particular, kernel maximum correntropy (KMC), which is
this approach can be found in [4], [5]. In the RLBMI structure blend between kernel least mean square (KLMS) [11] and
(Figure 1), the agent learns how to translate the neuradsstaMCC, was proposed in [10]. The basic idea of KMC is that
into actions based on reward values from the environment.input data is transferred to an reproducing kernel Hilbert
fact, the BMI user has no direct access to the actions, asphce (RKHS) using a nonlinear mapping function, and MCC
the agent, or BMI decoder, must interpret the user’s brai® applied as a cost function to minimize the error. It has
activity correctly to facilitate the rewards [3]. Noticeathboth been shown that the kernel maximum correntropy algorithm
systems act symbiotically by sharing the external device &mcurately approximates nonlinear systems, and it is able t
complete their tasks, and this co-adaptation allows caotis reduce the detrimental effects of various types of noise in

I. INTRODUCTION



_— AGENT Adiorn ENVIRONMENT kernel maximum correntropy, the gradient of the cost fuorcti
x(n) (BMI decoder) a(n+1)> Cor?(pl:)tetr :ursor/ can be expressed as follows:
lutalng oC(d(n),y(n 1
——— v, = LADIOD _ L egtemoen). @
Target Brain . ‘ . .
Fj(er“"ﬁ)d e where h. is the correntropy kernel size. Also, the estimated
<—, x(n+1) KMC function at timen + 1 is obtained as

- —e(@)?\ :

Fig. 1. The decoding structure of RLBMI [3]. feis 77; {e:cp < 2h2 > e(z)gb(:c(z))] ' ®)
In a multi-step prediction problem, given the observed
comparison with the MSE criterion. sequence of input-output pairgw(l),d), (z(2),d), ---,

In this paper, we introduce a novel value function approxix(m),d), we look for a functionf € H, whereH is a
mation algorithm by integrating the kernel temporal diéflece reproducing kernel Hilbert space (RKHS), such that
algorithm with the maximum correntropy criterion. We call
this algorithm the correntropy kernel temporal differemce () = {f,0(@(n) = {f,5(z(n),-),Vf €H (6)
(CKTD). We extend CKTD to estimate a policy based@n approximating the desired outpidt y(n) = f(z(n)).
learning, and this gives rise to tlg-learning via correntropy  In the supervised setting, the functigrcan only be updated
kernel temporal difference (Q-CKTD) algorithm. We explorence we have observed the whole sequencenoinputs
how the new cost function influences the performance @ecaused only becomes available at time:.. This yields
reinforcement learning problems including open loop RLBMiipdates forf of the form
experiments.

[I. CORRENTROPY KERNEL TEMPORAL fet+ Z;Af”’ (7)
DIFFERENCES " _ X
A. Maximum Correntropy Criterion where Af, = n(d — <f’¢(x(n.))>)¢(x(n))' By takingd =
y(m + 1), the error can be written as

Correntropy is defined in terms of inner products of vectors m

in a kernel feature space d—y(n) = Z(y(k +1) —y(k)), 8

C(X,Y) = E[G(X —Y) 1) =
) ) _and we can obtain an update férwithout having observed
where X" andY" are two random variables, ardlis a shift the desired signaf [12].

invariant kernel [8]. Correntropy can be set as a cost foncti  Thys, in the multistep prediction problem, the temporal

9] N difference (TD) error can be linked to the KMC algorithm
1 by using the recursion (8);
J = ElG(e)] ~ 1 > Gleln), (2) PYusing ®)
N o ~ (e, erp(k))?
S . . fef4n) |eap -
where e represents an error signal; in supervised learning, = 2h2
the error is the difference between desired sighand the m 9)
predictiony at timen, e(n) = d(n) — y(n). Here, we employ x Z eTD(kM(:v(n))] ,
the Gaussian kernef(e(n)) = exp(—e(n)?/2h%). For a k—n

system d;scribes byd paradmetri;:] nrwlappri]ng: f(210), thef where theerp(k) represents the temporal difference (TD)
paramete lgan € & a%t.e such that the correntropy o trgf'rordefined ag(k+1)—y(k). When we assign the eligibility
error signal 1S maximized. trace rate [12] as\ = 0, the correntropy kernel temporal

N difference (CKTD) update rule can be derived as follows
maxgmizez Gle(n)). (3) m )
= Ferend Jean (“22E) crpuiota()] - a0
This is called the maximum correntropy criterion (MCC). n=1 ¢
_ This equation also satisfies (9) in the case of single step
B. Correntropy Kernel Temporal Differences predictions {» = 1). Note that compared to the KTD(0)

Using the ideas of both kernel least mean square (KLM8pdate rule in [4], CKTD contains an extra weighting term
[11] and maximum correntropy criterion [9], kernel maximunwhich is the exponential of the negative squared error. This
correntropy (KMC) is introduced in supervised learning][10extra weighting term compensates for large errors which may
To maximize the error correntropy, we can use stochastisrupt the learning process since they force the system to
gradient ascent on the new cost function in the feature sjprmcemake unnecessarily large adjustments.



C. Q-learning via Correntropy Kernel Temporal Differences

The basic idea of@Q-learning is that when the action
value @) is close to the optimal action valug*, the policy,
which is greedy with respect to all action values for a given
state, is close to optimal; that is; > «' if and only if
Q™ (z,a) > Q" (z,a) for all statesz € X and actions
a € A. Therefore, the optimal action value functig)f can
be obtained byR*(z(n),a(n)) = max,; Q™ (z(n),a(n)).

Here, we can employ correntropy kernel temporal differ-
ences (CKTD) to estimate the action value functi@rwhich
is defined as

Q(x(n),a(n) = ER(n)|z(n),a(n)]. (1) : ;

Position

Altitude

Here, we use théfinite-horizondiscounted model foR(n)

which is defined ai:oo vkr(n—i-k—i—l) wherew is a discount Fig. 2. The Mountain-car task. Around the center of the hiie force of
P k=0 . . gravity is stronger than the car's engine.

factor satisfyingd < v < 1, andr is an instantaneous reward.

Therefore, the update rule faof-learning via correntropy

kernel temporal differences (Q-CKTD) is given by first accelerate backwards, even though it is further awai fr

the goal, and then drive forward with full acceleration. §hi

(12) is a representative example to evaluate the system'’s diapabi
in finding a proper policy to achieve a goal in reinforcement

= Q(z(n),a(n))¢(z(n))], learning.
whereQ represents the estimated action value by CKTD; for The details of the model are based on [14]. The system

a discrete set of actiorf)(z(n),a = [) can be computed as undergoes30 trials to learn the policy. At each trial, the
initial states are drawn randomly from1.2 < p < 0.5 and

fefn) Irtn+1) +ymaxQ(a(n +1),a)

n=1

! , —0.07 < v < 0.07 wherep andv are car position and velocity
Qa(n),a=1)=n Z[exp (=erpr(i)*/2h7) respectively. The system is initialized when the first tsiairts,
=1 . . . and each trial hag0* maximum number of steps. At each
< erpr()k(i)r(z(n), 2(0)],  tral, the number of steps is counted, and it is averaged over
(13) the 30 trials and50 Monte Carlo runs. For each Monte Carlo

whereerp, (i) denotes a temporal difference error defined dgn, the same set a30 initial values are used. For the
greedy method, we vary the exploration rate to confirm how
erpr(i) = r(i+1)+ymax Q(z(i+1),a) =Q(z(i),a(i) = k). the system learns under changing policy. We start with dyota
(14) random policye = 1. This value is kept unti200th step, and
Recall that the reward(i + 1) corresponds to the actionthen it is switched ta = 0. When the exploration rateis 0,
selected by the current policy with inpuf(i) because it is the performance shows exactly what the system has been able
assumed that this action causes the next input st(a't& 1). to learn from the random exploration,
Here, I1 (i) is an indicator vector with the same size as the wjith the optimal parameterg = 0.3, h = 0.2, and
number of outputs; only théth entry of the vector is settop, — 3, Q-learning via correntropy kernel temporal differ-
1, and the rest of the entries abeThe selection of the action ence (Q-CKTD) shows a mean and standard deviation of
unit £ at time : can be based on angreedy method [13]. 349.87 + 368.07, whereas Q-KTD show$58.57 + 1012.3.
Therefore, only the weight (parameter vector) correspegdiThis observation reveals the positive effect that robisstine
to the winning action gets updated. of correntropy as a cost function brings to learning under
ll. EXPERIMENTAL RESULTS changing policies. ,
) We further observe the average step number at each trial
A. Mountain Car Task over 50 Monte Carlo runs (Figure 3). Q-CKTD takes a larger
We first carry out experiments on a famous episodic task imumber of steps at the beginning, but as learning progresses
control problems known as “Mountain-car task.” There is@ cétrial number increases), it requires a significantly fewstps
driving along a mountain track, and the goal of this task is fger trial. We can also see that the system adapts to the
reach the top of the right side hill (Figure 2). The challengenvironment and is able to find a better policy. Note thatlunti
in this task is that there are regions near the center of tthe200th step, the policy is completely random, and thus, both
hill where maximum acceleration of the car is not enough &lgorithms show an average number of steps larger #0an
overcome the force imposed by gravity. Thus, if the systefrhe trials that reach the goal even under a random policy are
simply tries to maximize short term rewards, it would fail t@able to do so because their initial positions are close emoug
reach the goal. In this case, the only way to reach the goal istd the goal.
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B. Open Loop RLBMI Experiment between—1 and1, they are input to the system. The output

We apply theQ-learning via correntropy kernel tempor(,;llrepresents th8 possible directions, and among tR@utputs,
one action is selected kygreedy method.

difference (Q-CKTD) algorithm to neural decoding of a mon=- q h | 4 direct h )
key's neural states on a center-out reaching task aiming at, £35€ gn t de selecte |rect|o(;1, t Ie computer _cursgr posI-
targets (right, up, left, and down). The data employed is thjion IS updated. A positive reward valuel.5 is assigned to

experiment is provided by JoeFrancisLab at SUNY Downstatf%e system when the cursor reaches the reward zone (anywhere

Medical Center. A female bonnet macaque is trained for\’\ééthin a 0.5 radius from an assigned_ ta_rget). cherwise, the
center-out reaching task allowing action directions. The SYSteM €arns negative r.ewaﬂﬁ.ﬁ. A trial is term(ljnated once
monkey only observes how the position of a computer Curs%lpasseszlstepls or rec_elves t egositlve rev;/]ar f'i K |

on a screen changes over time, and its neural states from th}é\/e applyy = 0.9, ¢ = 0.01, andz = 0.5. The filter kerne

motor cortex (M1) are recorded while the monkey is Watchirg_Ze h _for Q-CKTD is_ chosen based on the average of pair
the screen change through the duration of the experime! ts€ distances of the input states. Wth= 1, Q-CKTD shows

Every trial starts at the center point, and the distance filzan Improvement over Q-KTD when the correntropy kemel size

center to each target is:m; anything within a radius ofem he = 1 is applied to the first two epochs and changed to

from the target point is considered as a valid reach (Figire #¢ = 0-8 at the third epoch. The success rates are obtained
at each epoch as the average number of successful trials over

the 4 targets. These success rates are further averaged@ver
Monte Carlo runs (Figure 5).

As with Q-KTD, Q-CKTD exploits the advantages of both
temporal difference learning and kernel methods. Since the
same data is repeated in each epoch, it is expected thatahe tw
algorithms converge and find a proper policy. Additionally,
because in the open loop experiment, neural states are not
changing in response to task execution, the improvement of
Q-CKTD is not dominant here. However, individual success
Fig. 4. The center-out reaching task allowing 8 directiofibe numbers rates of Q-CKTD for each target shows improvements versus
indicate the target indices. Q-KTD (Figure 6). The figure employs the same parameter set

as in Figure 5, but the results are obtained from a single run.

Here, open loop experiments are conducted, so adly In the beginning of learning, Q-KTD focus only on certain
successful trials are used for neural decoding. Spike timéisections, so it does not explore the full repertoire ofiops
from 49 units are converted to firing rates usingl@0ms (Figure 6(a)). However, the learning variation over eachdi
window, and a9th order tap delay line is applied; hene®0 tion in Q-CKTD is smaller in comparison with Q-KTD; in Q-
dimensions are used to represent the neural states. Eabth @KTD the system attempts to explore more directions during
allows 2 steps to approach the task. The distance between tbarning (Figure 6 (b)). When the task requires multiplepste
center and the target is covered in a single step. After inpand the search space is high dimensional, this property will
states are preprocessed by normalizing their dynamic rargevery useful because it should improve convergence time.
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Fig. 6. The success rates of each target overltstethrough5th epochs.
Target indicesl, 3, 5, and7 represent right, up, left, and down respectively.

[10]

IV. CONCLUSIONS

We introduced a novel policy estimation algorithm: Q[11
learning via correntropy kernel temporal differences (Q-
CKTD). The main idea of CKTD is to use correntropy instea
of mean squared error as an objective function which guidgs;
the learning process in kernel temporal differences.

We compared the performance between Q-CKTD and @f‘]
KTD first on a simulated control problem. The results showed
the robustness of Q-CKTD under changing policy. In addition
we applied the proposed algorithm to open loop RLBMI exper-
iments. The experimental results showed similar convergen
to Q-KTD in this simple task, but we were able to see that the
Q-CKTD explored the action space better. These resultsyimpl
that our developed methodology can be useful in relevant
practical scenarios. In RLBMI frame, we expect that the true
advantage of Q-CKTD will occur in closed-loop experiments
of more realistic tasks, which require multisteps to redwh t
target.

Further work on fine tuning the correntropy kernel size is
still necessary; a principled method to select the corogytr
kernel size is under development. Moreover, further thigzale
analysis of cost functions in reinforcement learning is an
ongoing effort.

]
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