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Differentiability implies continuity in neuronal dynamics
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Abstract

Recent work has identified nonlinear deterministic structure in neuronal dynamics using periodic orbit theory. Troublesome
in this work were the significant periods of time where no periodic orbits were extracted — “dynamically dark” regions.
Tests for periodic orbit structure typically require that the underlying dynamics are differentiable. Since continuity of a
mathematical function is a necessary but insufficient condition for differentiability, regions of observed differentiability should
be fully contained within regions of continuity. We here verify that this fundamental mathematical principle is reflected in
observations from mammalian neuronal activity. First, we introduce a null Jacobian transformation to verify the observation
of differentiable dynamics when periodic orbits are extracted. Second, we show that a less restrictive test for deterministic
structure requiring only continuity demonstrates widespread nonlinear deterministic structure only partially appreciated with
previous approaches. © 2001 Published by Elsevier Science B.V.
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1. Introduction

Much progress has been made in recent years
detecting deterministic dynamics within noisy experi-
mental environments [13]. Traditionally, counting
measures such as interspike interval histograms have
been used to examine the distributions of neuronal
firing times, and models of activity have assumed
that the dynamics of the fluctuations about the mean
rates are stochastic [31]. Since both action poten-
tial generation and synaptic transmission are highly
nonlinear processes, it is reasonable to assume that
some of the fluctuations about neuronal mean firing
rates are not well accounted for with linear stochastic
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dynamics. Indeed, we have come to recognize that
fluctuations in spike timing may appear deterministic,
and that stochastic models may fail to account for
neuronal timing [15]. If neurons do indeed generate
such detailed patterns of activity, our concept of how
neuronal networks process information may require
radical reinterpretation [11].

Gaining a better understanding of the behavior of
a complicated dynamical system, which is differen-
tiable near periodic orbits, has a celebrated history that
reaches back over a century in celestial [12], and quan-
tum mechanics [10]. Chaotic systems possess an infi-
nite number of invariant unstable periodic orbits [6].
Although characterizing an infinite number of periodic
orbits is impossible for real systems, there are three
important features of the shorter orbits: (1) they are the
ones most experimentally accessible, (2) the long term
average behavior of such systems can be well approxi-
mated through them [1,2], and (3) they can be used for
predicting [17] and controlling [7,16,22] such systems.

It has recently been shown that periodic orbits
can be identified within the neuronal activities from
a broad range of hierarchical neuronal organiza-
tion, from single cells through large ensembles
[4,5,18,20,24]. A still unresolved issue for the ex-
traction of periodic orbits from neuronal systems
are the “dynamically dark” regions — significant
time intervals where no periodic orbits seem to exist
[4,5,18,20,24]. We would anticipate that such highly
structured dynamical features such as periodic orbits
would not arise from a completely stochastic sea of
activity, and then disappear suddenly. Indeed, since
periodic orbits are hallmarks of deterministic acti-
vity, it is logical to presume that they arise from an
underlying deterministic process, and become visible
whenever either the noise within the system tran-
siently decreases, or when the system approaches a
particularly easy orbit to observe (e.g. an especially
short one). We hypothesize that in the process of
detecting periodic orbits, the apparently empty pe-
riods between resolved orbits contain structure that
remains unobserved. We seek an explanation for this
“dynamical dark matter”.

A common feature shared among many of the re-
cently developed methods for the extraction of peri-

odic orbits from experimental data is the implicit as-
sumption that the underlying dynamics are differen-
tiable [19,23,25,26]. If the dynamics are differentiable,
it is a necessary condition that the underlying function
is continuous [27]. Periods of detected differentiability
should therefore be fully contained within periods of
continuity. Since continuity is a less restrictive crite-
rion for determinism than differentiability (and should
be easier to observe experimentally), we predict that
regions of observed differentiability should arise from
a more extensive background of continuity. Continuity
should shed light on dynamically dark regions.

2. Methods

Transverse hippocampal slices 350–400mm thick
were prepared from rat brain using techniques previ-
ously described [22]. Slices were perfused in an inter-
face chamber at 3 ml/min with artificial cerebrospinal
fluid (ACSF, composed of, in mM, 155 Na+, 136
Cl−, 3.5 K+, 1.2 Ca2+, 1.2 Mg2+, 1.25 PO2−

4 , 24
HCO−

3 , 1.2 SO2−
4 , and 10 dextrose) at 34.5–35.1◦C.

Extracellular field potentials were recorded differ-
entially using saline-filled micropipettes (2–4 M�).
After a 90 min acclimation period, the perfusate was
changed to one containing one of the four high [K+]
concentrations: 7.5, 8.5, 9.5, or 10.5 mM, inducing
spontaneous population burst-firing events within the
network [21]. A typical example of such stereotyped
neuronal population burst-firing is shown in Fig. 1.
The times of onset of these events were extracted,

Fig. 1. Typical extracellular recording of voltage deflections corre-
sponding to network burst firing in a population of neurons. Cali-
bration bars: voltage (mV) and time (s). Intervals,In, determined
from onset times as shown.
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and the interevent time intervals between burst-firings
used for analysis. All animal experiments were ap-
proved by the institutional animal care and use com-
mittee of George Mason University.

Delay coordinate embedding [29] was used to
reconstruct the underlying dynamics from these in-
terburst intervals. To extract the unstable periodic
orbits from reconstructed state space, a transforma-
tion based on observed local dynamics was applied
[24–26] that concentrates the data density near the
periodic orbits. In the limit of noise-free dynamics the
probability distribution function of the transformed
data will be singular at the periodic points [25,26].
This reduces extraction of periodic orbits from exper-
imental data to searching for peaks in the distribution
of the transformed data. The concentration effect of
this transformation, a “dynamical lens”, depends im-
plicitly on the existence of differentiable dynamics in
the underlying dynamical function.

To illustrate why this is so, we use the trans-
formation to extract a period-1 orbit from the
one-dimensional discrete-time dynamical system
xn+1 = f (xn), where f (xn) is the function that
prescribes the evolution of the system statexn (in
practice we use higher dimensional state space and
dynamics, and extract higher period orbits [24]). We
assume that the dynamics described by the function
xn is unknown to us but that the local behavior of
the dynamics,f ′(xn) = df (xn)/dx, can be estimated
from a local least-squares fit to the experimental data.
The transformg(xn, k) of xn for period-1 orbitsx∗:
f (x∗) = x is then defined as

g(xn, k) ≡ xn − s(xn, k)xn−1

1 − s(xn, k)
,

where s(xn, k) = f ′(xn) + k(xn − xn−1) is a func-
tion defined by the estimated local dynamicsf ′(xn)
and byk, an adjustable parameter of the transform. In
practice, we use an ensemble average of densities of
g(xn, k), made with different randomly chosen values
for k. Other choices forg(xn, k) are possible and are
discussed in [25]. Significance of the observed peaks
is then estimated by comparison with the transformed
densities of amplitude adjusted Fourier transform sur-
rogates [30], via the statistics of extremes [8]. In par-

Fig. 2. Example of transformed data density histogram used to
isolate periodic orbits. Thick solid line is experimental result using
full transform (recurrence plus differentiability), thin solid line is
experimental density from transform using null Jacobian (recur-
rence), and the dotted line is the mean of the surrogates added to
the maximum surrogate peak value. The peak values were com-
puted from data after subtraction of the mean, and thus the mean
of the surrogate values are added to represent the 3% confidence
limit as shown in the figure. The highest data peak calculated with
the estimated Jacobian, the only one above the confidence limit,
indicates the significant periodic orbit. Data are from an experi-
ment at 10.5 mM [K+]. The increase in amplification of this peak
due to the estimated Jacobian matrix was approximately fourfold,
typical of results.

ticular, we estimate the probability that observed peaks
in the transformed density are larger than the largest
peaks observed in the surrogates. We employed be-
tween 30 and 50 surrogates for the analyses presented
here, and only accepted peaks that lay entirely out-
side the distribution of maximal surrogate peaks (see
Fig. 2). We therefore estimate a confidence limit of
falsely identifying a periodic orbit of less than about
3%, based on a 1-tailed nonparametric test of signifi-
cance for the expected probability that 1 of 31 sam-
ples, (one experimental data set and at least 30 surro-
gates) will be an outlier.

Note that peaks in the transformed density can be
attributed to two main factors: first from a high den-
sity of points in the original data in recurrent po-
sitions — points that already appear periodic; and
second from the concentrating effect of the transfor-
mation — points that map under the transformation
closer to the periodic points. The latter effect requires
successful estimation of the local derivatives of the
function. A modification of this transformation that
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only detects recurrent positions is achieved by setting
the terms corresponding to the estimates of the local
derivatives to zero — a null Jacobian transformation
[9]. If, in the above one-dimensional analysis, we set
f ′(x) = 0, the transformation reduces tog(xn, k) =
xn−1 + 1/((xn − xn−1)

−1 − k). We see that for recur-
rent points, i.e.(xn−xn−1) → 0, the result approaches
g(xn, k) = xn−1, independent ofk. On the other hand,
for (xn − xn−1) large,g(xn, k) = xn−1 − 1/k, which
yields points broadly distributed ask is varied. By
comparing the densities from these two transforma-
tions, we distinguish whether peaks in the transformed
density occur due just to recurrence in the original
data, an aspect not well preserved by the surrogates, or
are enhanced due to reasonable estimates of the local
derivatives of the function. This null Jacobian trans-
formation requires no surrogate data for validity, and
is independent of the continuity test applied below.

3. Results

If the dynamics of these neurons could be accounted
for by a mean rate with stochastic fluctuations, a lin-
ear stochastic model derived from the autocorrelation
analysis would best fit our data [3]. The frequency of
periodic orbit detections in each experimental group
is indicated in Table 1. At higher levels of [K+], all of
the experiments demonstrated periodic orbit structure
that could not be accounted for by linear properties.

In 100% of cases where we detected significant
periodic orbits, our estimated Jacobian matrices en-
hanced the density of points compared with null
Jacobian transformations (Table 1). The typical am-

Table 1
Summary of experimental resultsa

[K+] N %N with
UPOs

W %W with
UPOs

%UPOs with
enhancement

%W with UPOs
and continuity

7.5 8 50 33 15 100 100
8.5 9 77 44 16 100 100
9.5 11 82 71 23 100 100

10.5 11 100 68 24 100 100

a [K+]: potassium concentration in perfusate;N: number of experiments;W: number of data windows; UPOs: unstable periodic orbits;
enhancement indicates enhanced density about candidate UPOs. To enhance sensitivity, and compensate for nonstationarity, periodic orbits
were identified using overlapping 128 point data windows. Statistics in the table are reported for non-overlapping windows in order to
ensure that windows and periodic orbits were not over-counted.

plification of the density peaks through the use of
the estimated rather than null Jacobian matrices was
approximately 5 (range 1.5–2100). Fig. 2 illustrates
an example of the concentration effect of these esti-
mated Jacobian matrices. These results help validate
the presence of meaningful differentiable dynamics
associated with our identified periodic orbits.

We next applied a test for functional continuity to
these data [14]. Continuity of a function requires that
nearby points in the domain of definition of a function
will be mapped close to each other in its range [27].
In a complicated linear or nonlinear function, with or
without noise, it may be difficult to see the close evo-
lution of nearby trajectories since such close encoun-
ters may be rare or “exceptional” [14]. Nevertheless,
when found these closely tracking points unmistak-
ably reveal that a deterministic process is at hand. We
employ a method which is sensitive enough to detect
the (piecewise) continuity in a computer “random”
number generation algorithm in common use [14]. If
we have truly found differentiability in certain data
windows, indicated by the existence of periodic orbits,
these regions must be subsets of regions of continuity
that are at least as large as the differentiable regions.
Moreover, although regions of observed differentia-
bility should frequently be contiguous with regions
of continuity, the converse should not be valid; that
is, regions of continuity might stand alone without
contiguous regions of detected differentiability.

Following [14] we searched for all pairs of points
in reconstructed state space less thanδ distance apart,
‖Xn − Xm‖ < δ, n 6= m, and then measured the dis-
tanceε between the images of these pairs of points
one interval into the future,‖Xn+1 − Xm+1‖ =
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ε. The averageε for a given δ, ε̄(δ), is ε̄(δ) =
(1/N)

∑
n,m;n6=m‖Xn+1 − Xm+1‖, for all n, m such

that ‖Xn − Xm‖ < δ, whereN is the total number
of pairs satisfying the inequality‖Xn − Xm‖ < δ,
and ‖ · ‖ is the Euclidean norm. We then generated
100 surrogate data sets and determined how many
surrogate sets have an̄ε less than or equal to the
ε̄ obtained for the experimental data at a givenδ.
One-tailed parametric estimates of confidence limits
are generated by the percentage of surrogate results
with smallerε̄ than the experimental data.

Significant continuity was identified in all data win-
dows with significant periodic orbits (Table 1). The

Fig. 3. Simultaneous comparison of observation of periodic orbits (indicated by triangles) with significant continuity (gray scale). Abscissa
indicates window number for experiment, equivalent to time. Ordinate indicates values ofε in arbitrary units. Gray scale represents
probability that functional continuity is significant, with dark gray revealing less than 5% chance of finding continuity in the surrogates.
Since these statistics are on a pixel by pixel basis, confluently gray regions represent continuity with much greater than 95% confidence.
Data windows represent 128 interspike intervals, with neighboring windows overlapped over 126 intervals. The two periodic orbits indicated
were period-1 orbits, centered at about 960 and 985 ms, respectively. Note that each periodic orbit is contained in time within a larger
period of continuity, and that substantial regions of continuity are present within which no differentiability is identified. We could identify
no experimental correlates of the contrasting regions of continuity versus differentiability.

surrogate data test for significance makes it unlikely
that such evidence for functional continuity could be
accounted for by the linear stochastic properties of
the intervals. As predicted above, we observed that re-
gions with differentiability, containing periodic orbits,
were subsets of and therefore contiguous with regions
where only continuity was found. Furthermore, re-
gions with highly significant continuity were found
widespread, not necessarily associated with differen-
tiable areas. As expected, regions with differentiabil-
ity without continuity were not encountered. Whereas
significant periodic orbits were detected in 15–24% of
the data time windows, the length of time occupied by
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significant continuity in these experiments was more
than twice this amount. A typical example of the in-
termingling of regions with continuity and differentia-
bility from these experiments is illustrated in Fig. 3.

4. Discussion

These data provide compelling evidence that the
fluctuations about the mean burst rate of these neuronal
networks are frequently deterministic. Periodic orbits
reveal only a fraction of the amount of nonlinear de-
terministic behavior detectable in these systems. The
degree of nonlinear deterministic activity increased as
[K+] increased. We made these observations despite
having used neuronal networks cut off from their nat-
ural inputs and stimulation patterns, perhaps the worst
condition for detecting structure in neuronal dynamics
[28].

There are many features in biological systems that
limit the resolvability of differentiability and hence
periodic orbits. Biological systems are nonstationary,
and this is reflected in our data in the disparity between
the percentage of experiments (50–100%) versus per-
centage of data windows (15–24%), within which pe-
riodic orbits were identified (Table 1). Nevertheless,
our use of relatively small data windows (128 inter-
burst intervals,∼2–3 min of data) reduces the effect of
nonstationarity on our analysis. On the other hand, our
ability to resolve differentiable maps from experimen-
tal systems will be constrained by such finite sampling
of the underlying dynamical function. We therefore
remain cautious in equating our ability to resolve pe-
riodic orbits with existence of differentiability in the
underlying dynamics. Nevertheless, our null Jacobian
results are fully consistent with the observation of dif-
ferentiability from these experiments.

Our “dynamical dark matter” is therefore revealed
to contain functions drawn from the set of continuous
(or piecewise continuous) mathematical functions. In
addition, our findings lend further validity to previ-
ous findings of periodic orbits within such dynamics.
From a practical point of view in handling experimen-
tal data, continuity is a less restrictive feature in the
functional representation of a dynamical system than

is differentiability, and is easier to detect. If the goal
is to demonstrate determinism in experimental data,
continuity appears to be a better test than periodic or-
bit extraction.
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